Statistical process monitoring based on a multi-manifold projection algorithm

[1]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[2]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[3]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[4]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[5]  Age K. Smilde,et al.  Generalized contribution plots in multivariate statistical process monitoring , 2000 .

[6]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[7]  Richard D. Braatz,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[8]  Seongkyu Yoon,et al.  Fault diagnosis with multivariate statistical models part I: using steady state fault signatures , 2001 .

[9]  Age K. Smilde,et al.  Critical evaluation of approaches for on-line batch process monitoring , 2002 .

[10]  Junghui Chen,et al.  On-line batch process monitoring using dynamic PCA and dynamic PLS models , 2002 .

[11]  Manabu Kano,et al.  Monitoring independent components for fault detection , 2003 .

[12]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[13]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[14]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[15]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[16]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[17]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[18]  In-Beum Lee,et al.  Sensor fault identification based on time-lagged PCA in dynamic processes , 2004 .

[19]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[20]  Deng Cai,et al.  Statistical and computational analysis of locality preserving projection , 2005, ICML.

[21]  G. Irwin,et al.  Process monitoring approach using fast moving window PCA , 2005 .

[22]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[23]  In-Beum Lee,et al.  Fault detection and diagnosis based on modified independent component analysis , 2006 .

[24]  Zhi-huan Song,et al.  Process Monitoring Based on Independent Component Analysis - Principal Component Analysis ( ICA - PCA ) and Similarity Factors , 2007 .

[25]  Jingqi Yuan,et al.  Multivariate statistical process control based on multiway locality preserving projections , 2008 .

[26]  Si-Zhao Joe Qin,et al.  Reconstruction-based contribution for process monitoring , 2009, Autom..

[27]  G. Rong,et al.  Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis , 2009 .

[28]  Jin Wang,et al.  Multivariate Statistical Process Monitoring Based on Statistics Pattern Analysis , 2010 .

[29]  Chun-Chin Hsu,et al.  A novel process monitoring approach with dynamic independent component analysis , 2010 .

[30]  Jianzhong Wang,et al.  A structure-preserved local matching approach for face recognition , 2011, Pattern Recognit. Lett..

[31]  Zhi-huan Song,et al.  Global–Local Structure Analysis Model and Its Application for Fault Detection and Identification , 2011 .

[32]  Lei Zhang,et al.  A multi-manifold discriminant analysis method for image feature extraction , 2011, Pattern Recognit..

[33]  H. Shi,et al.  Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models , 2012 .

[34]  Jianbo Yu,et al.  Local and global principal component analysis for process monitoring , 2012 .

[35]  Xi Chen,et al.  Direct Discriminant Locality Preserving Projection With Hammerstein Polynomial Expansion , 2012, IEEE Transactions on Image Processing.

[36]  Kup-Sze Choi,et al.  Minimum-maximum local structure information for feature selection , 2013, Pattern Recognit. Lett..