Terrain-aided navigation with an atomic gravimeter

Cold atom interferometer is a promising technology to obtain a highly sensitive and accurate absolute gravimeter. With the help of an anomalies gravity map, local measurements of gravity allow a terrain-based navigation. This paper follows the one we published in Fusion 2017. Based on an atomic gravimeter we present a method to map the gravity anomaly. We propose a modification of the Laplace-based particle filter so as to make it more robust. Some simulation results demonstrate a better robustness of the proposed filter.

[1]  N. Zahzam,et al.  Absolute marine gravimetry with matter-wave interferometry , 2018, Nature Communications.

[2]  Karim Dahia,et al.  Absolute gravimeter for terrain-aided navigation , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[3]  Frédéric Champagnat,et al.  Improvement of the laplace-based particle filter for track-before-detect , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[4]  이승철,et al.  Recursive Bayesian Estimation 을 이용한 규칙기반 회전체 진단 , 2015 .

[5]  Christian Musso,et al.  A Laplace-based particle filter for track-before-detect , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[6]  Walter H. F. Smith,et al.  New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure , 2014, Science.

[7]  A. Landragin,et al.  Stability comparison of two absolute gravimeters: optical versus atomic interferometers , 2014, 1406.5134.

[8]  Achille Murangira,et al.  Nouvelles approches en filtrage particulaire. Application au recalage de la navigation inertielle. (New particle filtering methods. Application to terrain-aided inertial navigation) , 2014 .

[9]  Christian Musso,et al.  Proposal distribution for particle filtering applied to terrain navigation , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[10]  Paul Bui Quang Approximation particulaire et méthode de Laplace pour le filtrage bayésien , 2013 .

[11]  O. Carraz,et al.  Compact cold atom gravimeter for field applications , 2013, 1302.1518.

[12]  Christian Musso,et al.  Multidimensional Laplace formulas for nonlinear Bayesian estimation , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[13]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[14]  Математика Recursive Bayesian Estimation , 2010 .

[15]  H. Rice,et al.  Submarine navigation applications of atom interferometry , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[16]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[17]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  C. Bordé Atomic interferometry with internal state labelling , 1989 .

[20]  John F. Clauser,et al.  Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry☆ , 1988 .