Effects of heat treatment on Na-ion conductivity and conduction pathways of fluorphosphate glass-ceramics

[1]  Xinhai Xu,et al.  Current trends and future challenges of electrolytes for sodium-ion batteries , 2016 .

[2]  Changgui Lin,et al.  Glass Formation and Ionic Conduction Behavior in GeSe2–Ga2Se3–NaI Chalcogenide System , 2015 .

[3]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[4]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[5]  Li Lu,et al.  Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic , 2015 .

[6]  Kehan Yu,et al.  A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries , 2015 .

[7]  Shan Jiang,et al.  Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte , 2015 .

[8]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[9]  R. Zheng,et al.  Novel Synthesis of Low Hydroxyl Content Yb3+‐Doped Fluorophosphate Glasses with Long Fluorescence Lifetimes , 2015 .

[10]  O. Reznitskikh,et al.  Conductivity in sodium-yttrium-silicate and sodium-yttrium-phosphate glass , 2015, Glass Physics and Chemistry.

[11]  Xiaoxiong Xu,et al.  Influence of phosphorus sources on lithium ion conducting performance in the system of Li2O–Al2O3–GeO2–P2O5 glass–ceramics , 2015 .

[12]  K. Tadanaga,et al.  Preparation of Li 3 BO 3 -Li 2 SO 4 glass-ceramic electrolytes for all-oxide lithium batteries , 2014 .

[13]  A. Hayashi,et al.  Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling , 2014 .

[14]  S. Sen,et al.  Fast Na-Ion Conduction in a Chalcogenide Glass–Ceramic in the Ternary System Na2Se–Ga2Se3–GeSe2 , 2014 .

[15]  Wang Dongdong,et al.  Investigations on CaF2:Nd Microcrystal‐Glass Composites with High Transmittance and Long Fluorescence Lifetime , 2014 .

[16]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[17]  Masahiro Tatsumisago,et al.  X‐ray Crystal Structure Analysis of Sodium‐Ion Conductivity in 94 Na3PS4⋅6 Na4SiS4 Glass‐Ceramic Electrolytes , 2014 .

[18]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[19]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[20]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[21]  Steve W. Martin,et al.  IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses. , 2014, The journal of physical chemistry. B.

[22]  Steve W. Martin,et al.  Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses. , 2013, The journal of physical chemistry. B.

[23]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[24]  R. Zheng,et al.  Spectroscopic properties of ZrF4-based fluorophosphate laser glasses with large stimulated emission cross-section and high thermal stability , 2013 .

[25]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[26]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[27]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[28]  K. Shinozaki,et al.  Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12 , 2015 .

[29]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .