Network biology: understanding the cell's functional organization

A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

[1]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[2]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[3]  K. F. Tipton,et al.  Biochemical systems analysis: A study of function and design in molecular biology , 1978 .

[4]  Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology (Michael A. Savageau) , 1978 .

[5]  B. Bollobás The evolution of random graphs , 1984 .

[6]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[7]  D. Fell Understanding the Control of Metabolism , 1996 .

[8]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[9]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  B. Palsson,et al.  The underlying pathway structure of biochemical reaction networks. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[13]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[16]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[17]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[18]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[19]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[20]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[21]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[22]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[23]  Andrey Rzhetsky,et al.  Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome , 2001, Bioinform..

[24]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[25]  A. Grigoriev A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. , 2001, Nucleic acids research.

[26]  Sarah A. Teichmann,et al.  An insight into domain combinations , 2001, ISMB.

[27]  Nicola J. Rinaldi,et al.  Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle , 2001, Cell.

[28]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[29]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[30]  S. Wuchty Scale-free behavior in protein domain networks. , 2001, Molecular biology and evolution.

[31]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[32]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  S. Strogatz Exploring complex networks , 2001, Nature.

[34]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[35]  M. Gerstein,et al.  Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. , 2001, Journal of molecular biology.

[36]  Mark Gerstein,et al.  Protein fold and family occurrence in genomes : power-law behaviour and evolutionary model Running title : Power-law behaviour and evolutionary model , 2001 .

[37]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[39]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[40]  K-I Goh,et al.  Fluctuation-driven dynamics of the internet topology. , 2002, Physical review letters.

[41]  H. Agrawal Extreme self-organization in networks constructed from gene expression data. , 2002, Physical review letters.

[42]  B. Snel,et al.  The identification of functional modules from the genomic association of genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[44]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[45]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  William B. Kristan,et al.  Faculty Opinions recommendation of Network motifs: simple building blocks of complex networks. , 2002 .

[47]  U. Sauer,et al.  Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli , 2002, Journal of bacteriology.

[48]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Redner,et al.  Infinite-order percolation and giant fluctuations in a protein interaction network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[51]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[52]  Prahlad T. Ram,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2002, Science.

[53]  Guy Plunkett,et al.  Engineering a reduced Escherichia coli genome. , 2002, Genome research.

[54]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[55]  Thomas Pfeiffer,et al.  Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae , 2002, Bioinform..

[56]  David J. Galas,et al.  A duplication growth model of gene expression networks , 2002, Bioinform..

[57]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[58]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[59]  Jun Hyoung Lee,et al.  Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system , 2002, Nature Biotechnology.

[60]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[61]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[62]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[63]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[64]  E. Koonin,et al.  The structure of the protein universe and genome evolution , 2002, Nature.

[65]  D. Featherstone,et al.  Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[66]  V. Kuznetsov,et al.  General statistics of stochastic process of gene expression in eukaryotic cells. , 2002, Genetics.

[67]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[68]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[69]  J. Tyson,et al.  The dynamics of cell cycle regulation. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[70]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[71]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Brazhnik,et al.  Linking the genes: inferring quantitative gene networks from microarray data. , 2002, Trends in genetics : TIG.

[73]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  Andreas Wagner,et al.  Convergent evolution of gene circuits , 2003, Nature Genetics.

[75]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[76]  A. Barabasi,et al.  Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. , 2003, Genome research.

[77]  I. Simon,et al.  Program-Specific Distribution of a Transcription Factor Dependent on Partner Transcription Factor and MAPK Signaling , 2003, Cell.

[78]  A. Barabasi,et al.  The topology of the transcription regulatory network in the yeast , 2002, cond-mat/0205181.

[79]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[80]  Petter Holme,et al.  Subnetwork hierarchies of biochemical pathways , 2002, Bioinform..

[81]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[82]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[83]  R. Milo,et al.  Subgraphs in random networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[85]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[86]  H. Mewes,et al.  Functional modules by relating protein interaction networks and gene expression. , 2003, Nucleic acids research.

[87]  E. Davidson,et al.  Developmental gene regulatory network architecture across 500 million years of echinoderm evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Lucy Shapiro,et al.  A Bacterial Cell-Cycle Regulatory Network Operating in Time and Space , 2003, Science.

[90]  H. Stanley,et al.  Optimal paths in disordered complex networks. , 2003, Physical review letters.

[91]  D. M. Krylov,et al.  Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. , 2003, Genome research.

[92]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  S. R. Datta,et al.  BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis , 2003, Nature.

[94]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[95]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[96]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[97]  U. Alon Biological Networks: The Tinkerer as an Engineer , 2003, Science.

[98]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[99]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[100]  E. Levanon,et al.  Preferential attachment in the protein network evolution. , 2003, Physical review letters.

[101]  D. Bray Molecular Networks: The Top-Down View , 2003, Science.

[102]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[103]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[104]  M. A. de Menezes,et al.  Fluctuations in network dynamics. , 2004, Physical review letters.

[105]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[106]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[107]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[108]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[109]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[110]  M. Vidal,et al.  Effect of sampling on topology predictions of protein-protein interaction networks , 2005, Nature Biotechnology.

[111]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[112]  R. Tsien,et al.  Specificity and Stability in Topology of Protein Networks , 2022 .

[113]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .