Ultralight Angstrom-Scale Optimal Optical Reflectors

High reflectance in many state-of-the-art optical devices is achieved with noble metals. However, metals are limited by losses and, for certain applications, by their high mass density. Using a combination of ab initio and optical transfer matrix calculations, we evaluate the behavior of graphene-based angstrom-scale metamaterials and find that they could act as nearly perfect reflectors in the mid–long-wave infrared (IR) range. The low density of states for electron–phonon scattering and interband excitations leads to unprecedented optical properties for graphene heterostructures, especially alternating atomic layers of graphene and hexagonal boron nitride, at wavelengths greater than 10 μm. At these wavelengths, these materials exhibit reflectivities exceeding 99.7% at a fraction of the weight of noble metals, as well as plasmonic mode confinement and quality factors that are greater by an order of magnitude compared to noble metals. These findings hold promise for ultracompact optical components and wa...

[1]  M. Soljačić,et al.  Visible quantum plasmons in highly-doped few-layer graphene , 2017 .

[2]  R. Sundararaman,et al.  Effects of Interlayer Coupling on Hot‐Carrier Dynamics in Graphene‐Derived van der Waals Heterostructures , 2016, 1612.08196.

[3]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[4]  S. Wen,et al.  Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal. , 2016, Optics express.

[5]  William A. Goddard,et al.  Ab initio phonon coupling and optical response of hot electrons in plasmonic metals , 2016, 1602.00625.

[6]  Ravishankar Sundararaman,et al.  Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. , 2016, ACS nano.

[7]  M. Brongersma,et al.  Creating semiconductor metafilms with designer absorption spectra , 2015, Nature Communications.

[8]  Francois Gygi,et al.  Optimization algorithm for the generation of ONCV pseudopotentials , 2015, Comput. Phys. Commun..

[9]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[10]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[11]  Pochi Yeh,et al.  Retrieval of material parameters for uniaxial metamaterials , 2014, 1411.6312.

[12]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[13]  A. Politano,et al.  Plasmon modes in graphene: status and prospect. , 2014, Nanoscale.

[14]  H. Atwater,et al.  Tunable large resonant absorption in a midinfrared graphene Salisbury screen , 2013, 1312.6463.

[15]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[16]  Hui‐Shen Shen,et al.  Graphene: Why buckling occurs? , 2013 .

[17]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[18]  Ravishankar Sundararaman,et al.  Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial systems , 2013, 1302.6204.

[19]  Ivan Mukhin,et al.  Hyperbolic metamaterials based on multilayer graphene structures , 2012, 1211.5117.

[20]  T. Winzer,et al.  Impact of Auger processes on carrier dynamics in graphene , 2012, 1204.5650.

[21]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[22]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[23]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[24]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[25]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[26]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[27]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[28]  Steven G. Louie,et al.  Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials , 2008, 0803.0306.

[29]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[30]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[31]  J. Brink,et al.  Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations , 2007, 0704.1994.

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[34]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[35]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[36]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[39]  Igor Vurgaftman,et al.  Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. , 2016, Nature nanotechnology.

[40]  R. C. Thompson,et al.  Optical Waves in Layered Media , 1990 .