Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials

Abstract This paper conducts a comparative evaluation on typical critical plane criteria, including Fatemi-Socie, Wang-Brown, modified Smith-Watson-Topper (MSWT) and proposed modified generalized strain energy (MGSE) criteria for multiaxial fatigue analysis of ductile/brittle materials. Experimental datasets of four materials under uniaxial tension, torsion and proportional/non-proportional multiaxial loadings are introduced for model comparison. This study results indicate that criteria with additional material constants yield robust life predictions for different materials. Moreover, the criteria with shear and uniaxial fatigue properties are respectively suitable for ductile and brittle materials, particularly the MGSE superior to others for ductile/brittle materials while MSWT only for brittle materials.

[1]  W. Zeng,et al.  The effect of microstructure on the mechanical properties of TC4-DT titanium alloys , 2013 .

[2]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[3]  Zhiyong Wu,et al.  Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading , 2014 .

[4]  Luca Susmel,et al.  A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading , 2012 .

[5]  Jiang A fatigue criterion for general multiaxial loading , 2000 .

[6]  Andrea Carpinteri,et al.  Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts , 2016 .

[7]  Yingdong Song,et al.  Evaluation of multiaxial fatigue life prediction criteria for Ni-based superalloy GH4169 , 2018 .

[8]  Yunhan Liu,et al.  A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades , 2017, Materials.

[9]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[10]  F. Dunne,et al.  Comparative assessment of dissipated energy and other fatigue criteria , 2007 .

[11]  Bernd Markert,et al.  Multiaxial fatigue life assessment of sintered porous iron under proportional and non-proportional loadings , 2017 .

[12]  Qiang Liu,et al.  Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations , 2017 .

[13]  A. Fatemi,et al.  Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect , 2017 .

[14]  Yanyao Jiang,et al.  Multiaxial fatigue of extruded AZ61A magnesium alloy , 2011 .

[15]  Shun-Peng Zhu,et al.  Probabilistic framework for multiaxial LCF assessment under material variability , 2017 .

[16]  W. Findley A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending , 1959 .

[17]  Ali Fatemi,et al.  Notch deformation and stress gradient effects in multiaxial fatigue , 2016 .

[18]  Pedro M.G.P. Moreira,et al.  A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters , 2017 .

[19]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[20]  Hong-Zhong Huang,et al.  A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys , 2012 .

[21]  D. Shang,et al.  New pseudo stress correction method for estimating local strains at notch under multiaxial cyclic loading , 2017 .

[22]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[23]  Jiang Fan,et al.  Probabilistic damage tolerance analysis on turbine disk through experimental data , 2012 .

[24]  Ayhan Ince,et al.  A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings , 2014 .

[25]  Shun-Peng Zhu,et al.  A modified strain energy density exhaustion model for creep–fatigue life prediction , 2016 .

[26]  A. Varvani-Farahani,et al.  Fatigue damage and life evaluation of SS304 and Al 7050-T7541 alloys under various multiaxial strain paths by means of energy-based Fatigue damage models , 2016 .

[27]  James R. Rice,et al.  Ductile versus brittle behaviour of crystals , 1974 .

[28]  Nicole Apetre,et al.  Generalized probabilistic model allowing for various fatigue damage variables , 2017 .

[29]  Dianyin Hu,et al.  Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling , 2016 .

[30]  Ayhan Ince,et al.  Innovative computational modeling of multiaxial fatigue analysis for notched components , 2016 .

[31]  Tianwen Zhao,et al.  Fatigue of 7075-T651 aluminum alloy , 2008 .

[32]  Abílio M. P. De Jesus,et al.  Local unified probabilistic model for fatigue crack initiation and propagation: Application to a notched geometry , 2013 .

[33]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[34]  Yanyao Jiang,et al.  Multiaxial fatigue of extruded AZ31B magnesium alloy , 2012 .

[35]  Shun-Peng Zhu,et al.  Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants , 2017, Materials.

[36]  Shan-Tung Tu,et al.  Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 °C based on cycle-by-cycle concept , 2017 .

[37]  Shun-Peng Zhu,et al.  Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals , 2016 .

[38]  Luis Reis,et al.  Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials , 2009 .

[39]  S. C. Wu,et al.  Cyclic plastic strain based damage tolerance for railway axles in China , 2016 .

[40]  A. Yokobori Difference in the creep and creep crack growth behaviour between creep ductile and brittle materials , 1999 .

[41]  Shun-Peng Zhu,et al.  Fatigue reliability assessment of turbine discs under multi‐source uncertainties , 2018 .

[42]  Adam Niesłony,et al.  Fatigue life under non-Gaussian random loading from various models , 2004 .

[43]  H. Gough Engineering Steels under Combined Cyclic and Static Stresses , 1949 .

[44]  Luca Susmel,et al.  The Modified Manson–Coffin Curve Method to estimate fatigue lifetime under complex constant and variable amplitude multiaxial fatigue loading , 2016 .

[45]  S. Mahadevan,et al.  A unified multiaxial fatigue damage model for isotropic and anisotropic materials , 2007 .

[46]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .