High-speed imaging of human retina in vivo with swept-source optical coherence tomography.

We present the first demonstration of human retinal imaging in vivo using optical frequency domain imaging (OFDI) in the 800-nm range. With 460-muW incident power on the eye, the sensitivity is 91 dB at maximum and >85 dB over 2-mm depth range. The axial resolution is 13 mum in air. We acquired images of retina at 43,200 depth profiles per second and a continuous acquisition speed of 84 frames/s (512 A-lines per frame) could be maintained over more than 2 seconds.

[1]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[2]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[3]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[4]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[5]  S. Yun,et al.  In vivo optical frequency domain imaging of human retina and choroid. , 2006, Optics express.

[6]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[7]  T. Mitsui,et al.  Dynamic Range of Optical Reflectometry with Spectral Interferometry , 1999 .

[8]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[9]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[10]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[11]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[12]  D. B. Mortimore,et al.  Fiber loop reflectors , 1988 .

[13]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[14]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[15]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[17]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[18]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[19]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[20]  S H Yun,et al.  Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. , 2004, Optics express.

[21]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[22]  J. You,et al.  Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging. , 2006, Optics express.

[23]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[24]  L. A. Paunescu,et al.  Ultrahigh-resolution optical coherence tomography in glaucoma. , 2005, Ophthalmology.

[25]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[26]  S. Yun,et al.  Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. , 2006, Optics express.

[27]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.