On the Vanishing Electron-Mass Limit in Plasma Hydrodynamics in Unbounded Media

We consider the zero-electron-mass limit for the Navier–Stokes–Poisson system in unbounded spatial domains. Assuming smallness of the viscosity coefficient and ill-prepared initial data, we show that the asymptotic limit is represented by the incompressible Navier–Stokes system, with a Brinkman damping, in the case when viscosity is proportional to the electron-mass, and by the incompressible Euler system provided the viscosity is dominated by the electron mass. The proof is based on the RAGE theorem and dispersive estimates for acoustic waves, and on the concept of suitable weak solutions for the compressible Navier–Stokes system.

[1]  D. Bucur,et al.  The incompressible limit of the full Navier―Stokes―Fourier system on domains with rough boundaries , 2009 .

[2]  E. Feireisl,et al.  Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids , 2011 .

[3]  Li Chen,et al.  The zero-electron-mass limit in the hydrodynamic model for plasmas , 2010 .

[4]  S. Schochet THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .

[5]  Leonid Parnovski,et al.  Trapped modes in acoustic waveguides , 1998 .

[6]  Li Chen,et al.  Vanishing electron mass limit in the bipolar Euler–Poisson system☆ , 2011 .

[7]  E. Feireisl,et al.  Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2011, 1111.3082.

[8]  I. Gallagher Résultats récents sur la limite incompressible , 2005 .

[9]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[10]  Hiroshi Isozaki,et al.  Singular limits for the compressible Euler equation in an exterior domain , 1986 .

[11]  Reinhard Farwig,et al.  AnLq-approach to Stokes and Navier-Stokes equations in general domains , 2005 .

[12]  R. Danchin,et al.  Zero Mach number limit for compressible flows with periodic boundary conditions , 2002 .

[13]  Ni e Cedex A Hierarchy of Hydrodynamic Models for Plasmas. Quasi-Neutral Limits in the Drift-Diffusion Equations , 1999 .

[14]  R. Racke,et al.  Nonlinear Wave Equations in Infinite Waveguides , 2003 .

[15]  D. Chae Remarks on the Blow-up of the Euler Equations and the Related Equations , 2004 .

[16]  Anile,et al.  Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors. , 1992, Physical review. B, Condensed matter.

[17]  R. Racke,et al.  Evolution Equations on Non-Flat Waveguides , 2010, 1010.0817.

[18]  Li Chen,et al.  The zero-electron-mass limit in the Euler–Poisson system for both well- and ill-prepared initial data , 2011 .

[19]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .

[20]  Ansgar Jüngel,et al.  A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations , 2000 .

[21]  B. Simon,et al.  Texts and Monographs in Physics , 1987 .

[22]  E. Feireisl,et al.  Suitable weak solutions: from compressible viscous to incompressible inviscid fluid flows , 2013 .

[23]  Thomas Alazard,et al.  Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions , 2005, Advances in Differential Equations.

[24]  I︠U︡riĭ Grigorʹevich Reshetni︠a︡k Stability theorems in geometry and analysis , 1994 .

[25]  James Lighthill,et al.  Waves In Fluids , 1966 .

[26]  Tommaso Ruggeri,et al.  Hyperbolicity in Extended Thermodynamics of Fermi and Bose gases , 2004 .

[27]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[28]  Nader Masmoudi,et al.  Chapter 3 Examples of singular limits in hydrodynamics , 2007 .