The viscoelastic properties of polymer‐modified asphalts

The linear viscoelastic properties of one family of base asphalts, unmodified or modified by the simple addition of an elastomer or by further in-situ crosslinking, have been investigated. The time-temperature superposition principle was shown to be valid for the base as well as for the modified asphalts. The addition of the elastomer styrene-butadiene (SB) copolymer increased drastically the storage modulus and the elastic character of the asphalts. The thermal susceptibility of the polymer modified asphalts was considerably reduced and this combined with an increased resistance to deformation (larger complex modulus) suggests much better performances for road applications. The chemically modified asphalt containing 3% SB showed similar viscoelastic properties as the physical blend containing 6% SB. On a etudie les proprietes viscoelastiques lineaires d'une famille d'asphaltes de base, non modifies ou modifies par simple ajout d'un elastomere ou par reticulation in situ. On montre que le principe de superposition temps-temperature est valable autant pour les asphaltes de base que pour les asphaltes modifies. L'ajout du copolymere elastomere de styrene-butadiene (SB) augmente considerablement le module d'emmagasinage et le caractere elastique des asphaltes. La susceptibilite thermique des asphaltes modifies est grandement reduite ce qui, si l'on tient compte egalement de la resistance accrue a la deformation (module complexe plus grand), suggere de meilleures performances en vue d'applications sur les routes. L'asphalte modifie chimiquement contenant 3% de SB montre des proprietes elastiques comparables au melange physique contenant 6% de SB.

[1]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[2]  Mary Stroup-Gardiner,et al.  Asphalt modified by SBS triblock copolymer: Structures and properties , 1996 .

[3]  Didier Lesueur,et al.  Polymer modified asphalts as viscoelastic emulsions , 1998 .

[4]  J. Palierne Linear rheology of viscoelastic emulsions with interfacial tension , 1990 .

[5]  M. Bousmina,et al.  Polymer blends for enhanced asphalt binders , 1996 .

[6]  P. Carreau,et al.  Properties of PETG/EVA blends: 1. Viscoelastic, morphological and interfacial properties , 1996 .

[7]  O Harders,et al.  Influence of asphalt grade and polymer concentration on the high temperature performance of polymer modified asphalt , 1992 .

[8]  M. Bousmina,et al.  Rheology/morphology/flow conditions relationships for polymethylmethacrylate/rubber blend , 1996 .

[9]  J. G. Brodnyan,et al.  The Rheology of Asphalt. III. Dynamic Mechanical Properties of Asphalt , 1960 .

[10]  A Berker,et al.  Rheology and Microstructure of Polymer/Asphalt Blends , 1991 .

[11]  P. Carreau,et al.  Rheological Properties of Blends: Facts and Challenges , 1994 .

[12]  G. Kraus,et al.  Modification of Asphalt by Block Polymers of Butadiene and Styrene , 1982 .

[13]  John D. Ferry,et al.  Some approximate equations useful in the phenomenological treatment of linear viscoelastic data , 1959 .

[14]  M. Bousmina,et al.  Comparing the effect of corona treatment and block copolymer addition on rheological properties of polystyrene/polyethylene blends , 1995 .

[15]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[16]  M. Bousmina,et al.  Linear viscoelasticity in the melt of impact PMMA. Influence of concentration and aggregation of dispersed rubber particles , 1993 .

[17]  R. Woodhams,et al.  Asphalt-polyolefin emulsion breakdown , 1991 .

[18]  W. Cox,et al.  Correlation of dynamic and steady flow viscosities , 1958 .