Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel

In this paper, the fractional equations of the mass-spring-damper system with Caputo and Caputo–Fabrizio derivatives are presented. The physical units of the system are preserved by introducing an auxiliary parameter σ. The input of the resulting equations is a constant and periodic source; for the Caputo case, we obtain the analytical solution, and the resulting equations are given in terms of the Mittag–Leffler function; for the Caputo–Fabrizio approach, the numerical solutions are obtained by the numerical Laplace transform algorithm. Our results show that the mechanical components exhibit viscoelastic behaviors producing temporal fractality at different scales and demonstrate the existence of Entropy 2015, 17 6290 material heterogeneities in the mechanical components. The Markovian nature of the model is recovered when the order of the fractional derivatives is equal to one.

[1]  A. Stanislavsky,et al.  Fractional oscillator. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[3]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[4]  M. Alper Kutay,et al.  The Fractional Fourier Transform and Harmonic Oscillation , 2002 .

[5]  Francesco Mainardi,et al.  Fractional relaxation with time-varying coefficient , 2014 .

[6]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[7]  Alexander Puzenko,et al.  Damped oscillations in view of the fractional oscillator equation , 2002 .

[8]  Dumitru Baleanu,et al.  Modeling and simulation of the fractional space-time diffusion equation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[9]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  J. F. Gómez‐Aguilar,et al.  Fractional Transmission Line with Losses , 2014 .

[12]  V. Kiryakova,et al.  The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus , 2010, Comput. Math. Appl..

[13]  Mohammad Saleh Tavazoei,et al.  Reduction of oscillations via fractional order pre-filtering , 2015, Signal Process..

[14]  V. Kiryakova,et al.  The mellin integral transform in fractional calculus , 2013 .

[15]  Linear Fractionally Damped Oscillator , 2009, 0908.1683.

[16]  Dan Butnariu,et al.  Related Topics and Applications , 1993 .

[17]  F. Mainardi An historical perspective on fractional calculus in linear viscoelasticity , 2010, 1007.2959.

[18]  José António Tenreiro Machado,et al.  Some pioneers of the applications of fractional calculus , 2013 .

[19]  R. F. Escobar-Jiménez,et al.  Universal character of the fractional space-time electromagnetic waves in dielectric media , 2015 .

[20]  Badr Saad T. Alkahtani,et al.  Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel , 2015, Entropy.

[21]  F. T. K. Au,et al.  Damage Detection of a Continuous Bridge from Response of a Moving Vehicle , 2014 .

[22]  M. Caputo The memory damped seismograph , 2013 .

[23]  J. Tenreiro Machado,et al.  Science metrics on fractional calculus development since 1966 , 2013 .

[24]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[25]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[26]  On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach , 2014 .

[27]  J. F. Gómez‐Aguilar,et al.  Fractional mechanical oscillators , 2012 .

[28]  V. Kiryakova From the hyper-Bessel operators of Dimovski to the generalized fractional calculus , 2014 .

[29]  José António Tenreiro Machado,et al.  On development of fractional calculus during the last fifty years , 2013, Scientometrics.

[30]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[31]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[32]  António M. Lopes,et al.  Analysis of Natural and Artificial Phenomena Using Signal Processing and Fractional Calculus , 2015 .

[33]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[34]  YangQuan Chen,et al.  Multi-objective optimization of distributed-order fractional damping , 2015, Commun. Nonlinear Sci. Numer. Simul..

[35]  J. F. Aguilar,et al.  Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative , 2014 .

[36]  Dumitru Baleanu,et al.  SOLUTIONS OF THE TELEGRAPH EQUATIONS USING A FRACTIONAL CALCULUS APPROACH , 2014 .

[37]  J. F. Gómez‐Aguilar,et al.  A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response , 2014 .

[38]  Badr Saad T. Alkahtani,et al.  Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel , 2015 .

[39]  Vasily E. Tarasov,et al.  The fractional oscillator as an open system , 2012 .

[40]  Yangquan Chen,et al.  Application of numerical inverse Laplace transform algorithms in fractional calculus , 2011, J. Frankl. Inst..

[41]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[42]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[43]  A. Atangana,et al.  A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions , 2013 .