Optimized controlled-Z gates for two superconducting qubits coupled through a resonator

Superconducting qubits are promising candidates for building a quantum computer. A continued challenge for fast yet accurate gates is to minimize the effects of decoherence. Here we apply numerical methods to design fast entangling gates, specifically the controlled-Z, in an architecture where two qubits are coupled via a resonator. We find that the gates can be sped up by a factor of two and reach any target fidelity. We also discuss how systematic errors arising from experimental conditions affect the pulses and how to remedy them, providing a strategy for the experimental implementation of our results. We discuss the shape of the pulses, their spectrum and symmetry.

[1]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[2]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[3]  John M. Martinis,et al.  Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits , 2010, 1006.5084.

[4]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[5]  Jens Koch,et al.  Life after charge noise: recent results with transmon qubits , 2008, Quantum Inf. Process..

[6]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[7]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[8]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[9]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[10]  B. M. Fulk MATH , 1992 .

[11]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[12]  J. Martinis,et al.  High-fidelity controlled-σ Z gate for resonator-based superconducting quantum computers , 2013, 1301.1719.

[13]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[14]  Lev Vaidman,et al.  Minimum time for the evolution to an orthogonal quantum state , 1992 .

[15]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[16]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[17]  Denis Vion,et al.  Quantum speeding-up of computation demonstrated in a superconducting two-qubit processor , 2012 .

[18]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[19]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[20]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[21]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[22]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[23]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[24]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[25]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[26]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[27]  D. Colbert,et al.  A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method , 1992 .

[28]  D. James,et al.  Scalable, high-speed measurement-based quantum computer using trapped ions. , 2008, Physical review letters.

[29]  P. Rebentrost,et al.  Optimal control of a leaking qubit , 2008, 0808.2680.

[30]  Yasunobu Nakamura,et al.  Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. , 2012, Physical review letters.

[31]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[32]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[33]  Tommaso Calarco,et al.  Robust optimal quantum gates for Josephson charge qubits. , 2007, Physical review letters.

[34]  John M. Martinis,et al.  Superconducting Qubits , 2004 .

[35]  G. Vidal,et al.  Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.

[36]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[37]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[38]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[39]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[40]  Franco Nori,et al.  Controllable coupling between flux qubits. , 2006, Physical review letters.

[41]  J. E. Mooij,et al.  Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits , 2007, Nature.

[42]  M. Devoret,et al.  Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. , 2012, Physical review letters.

[43]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[44]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[45]  John M. Martinis,et al.  Resonator-zero-qubit architecture for superconducting qubits , 2011, 1105.3997.

[46]  L. Ioffe,et al.  Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.

[47]  Jump Time and Passage Time: The Duration ofs a Quantum Transition , 2001, quant-ph/0103151.

[48]  Felix Motzoi,et al.  High-fidelity quantum gates in the presence of dispersion , 2012 .

[49]  J. E. Mooij,et al.  Relaxation and Dephasing in a Flux-qubit , 2004 .

[50]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.