Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space

This paper introduces a general implicit iterative method for finding zeros of a maximal monotone operator in a Hilbert space which unifies three previously studied strategies: relaxation, inertial type extrapolation and projection step. The first two strategies are intended to speed up the convergence of the standard proximal point algorithm, while the third permits one to perform inexact proximal iterations with fixed relative error tolerance. The paper establishes the global convergence of the method for the weak topology under appropriate assumptions on the algorithm parameters.

[1]  Francesco Zirilli,et al.  Algorithm 617: DAFNE: a differential-equations algorithm for nonlinear equations , 1984, ACM Trans. Math. Softw..

[2]  Paul-Emile Maingé,et al.  NUMERICAL APPROACH TO A STATIONARY SOLUTION OF A SECOND ORDER DISSIPATIVE DYNAMICAL SYSTEM , 2002 .

[3]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[4]  M. Solodov,et al.  A hybrid projection-proximal point algorithm. , 1998 .

[5]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[6]  H. Attouch,et al.  THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .

[7]  Ronald E. Bruck Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .

[8]  A. Antipin,et al.  MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS BY MEANS OF DIFFERENTIAL EQUATIONS , 2003 .

[9]  Alfredo N. Iusem,et al.  On the need for hybrid steps in hybrid proximal point methods , 2001, Oper. Res. Lett..

[10]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[11]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[12]  Michael C. Ferris,et al.  Operator-Splitting Methods for Monotone Affine Variational Inequalities, with a Parallel Application to Optimal Control , 1998, INFORMS J. Comput..

[13]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[14]  J. Baillon,et al.  Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .

[15]  A. Moudafi,et al.  SECOND-ORDER DIFFERENTIAL PROXIMAL METHODS FOR EQUILIBRIUM PROBLEMS , 2003 .

[16]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[17]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[18]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[19]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[20]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[21]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[22]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[23]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..