Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point Algorithm for Maximal Monotone Operators in Hilbert Space
暂无分享,去创建一个
[1] Francesco Zirilli,et al. Algorithm 617: DAFNE: a differential-equations algorithm for nonlinear equations , 1984, ACM Trans. Math. Softw..
[2] Paul-Emile Maingé,et al. NUMERICAL APPROACH TO A STATIONARY SOLUTION OF A SECOND ORDER DISSIPATIVE DYNAMICAL SYSTEM , 2002 .
[3] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[4] M. Solodov,et al. A hybrid projection-proximal point algorithm. , 1998 .
[5] Benar Fux Svaiter,et al. Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..
[6] H. Attouch,et al. THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .
[7] Ronald E. Bruck. Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .
[8] A. Antipin,et al. MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS BY MEANS OF DIFFERENTIAL EQUATIONS , 2003 .
[9] Alfredo N. Iusem,et al. On the need for hybrid steps in hybrid proximal point methods , 2001, Oper. Res. Lett..
[10] Osman Güer. On the convergence of the proximal point algorithm for convex minimization , 1991 .
[11] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[12] Michael C. Ferris,et al. Operator-Splitting Methods for Monotone Affine Variational Inequalities, with a Parallel Application to Optimal Control , 1998, INFORMS J. Comput..
[13] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[14] J. Baillon,et al. Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .
[15] A. Moudafi,et al. SECOND-ORDER DIFFERENTIAL PROXIMAL METHODS FOR EQUILIBRIUM PROBLEMS , 2003 .
[16] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .
[17] Boris Polyak. Some methods of speeding up the convergence of iteration methods , 1964 .
[18] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[19] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[20] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[21] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[22] H. Attouch,et al. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .
[23] Felipe Alvarez,et al. On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..