Status of Background-Independent Coarse Graining in Tensor Models for Quantum Gravity

A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underlying the use of the number of degrees of freedom as a scale for a Renormalization Group flow. We focus on tensor models, for which we explain how the tensor size serves as the scale for a background-independent coarse-graining flow. This flow provides a new probe of a universal continuum limit in tensor models. We review the development and setup of this tool and summarize results in the two- and three-dimensional case. Moreover, we provide a step-by-step guide to the practical implementation of these ideas and tools by deriving the flow of couplings in a rank-4-tensor model. We discuss the phenomenon of dimensional reduction in these models and find tentative first hints for an interacting fixed point with potential relevance for the continuum limit in four-dimensional quantum gravity.

[1]  Michael R. Douglas,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[2]  Bianca Dittrich,et al.  The continuum limit of loop quantum gravity - a framework for solving the theory , 2014, 1409.1450.

[3]  W. Marsden I and J , 2012 .

[4]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[5]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[6]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[7]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[8]  A. Sfondrini,et al.  FUNCTIONAL RENORMALIZATION OF NONCOMMUTATIVE SCALAR FIELD THEORY , 2010, 1006.5145.

[9]  V. Lahoche,et al.  Ward identity violation for melonic T4-truncation , 2018, Nuclear Physics B.

[10]  V. Lahoche,et al.  Renormalizable Group Field Theory beyond melonic diagrams: an example in rank four , 2017, 1703.06729.

[11]  K. Yamawaki,et al.  Ultraviolet Fixed Point Structure of Renormalizable Four Fermion Theory in Less Than Four-dimensions , 1990 .

[12]  J. Ryan,et al.  Melons are Branched Polymers , 2013, 1302.4386.

[13]  R. Gurău,et al.  Invitation to Random Tensors , 2016, 1609.06439.

[14]  Jorge Pullin,et al.  Loop Quantum Gravity: The First 30 Years , 2017 .

[15]  Song He,et al.  Coarse-graining free theories with gauge symmetries: the linearized case , 2010, 1011.3667.

[16]  Herbert W. Hamber,et al.  Quantum Gravitation: The Feynman Path Integral Approach , 2008 .

[17]  Carles Ayala Renormalization group approach to matrix models in two-dimensional quantum gravity☆ , 1993, hep-th/9304090.

[18]  A. Baratin,et al.  Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity , 2011, 1111.5842.

[19]  Razvan Gurau,et al.  The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.

[20]  Richard H. Price,et al.  Black Holes , 1997 .

[21]  I. Klebanov,et al.  Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models , 2016, 1611.08915.

[22]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[23]  Antonio D. Pereira,et al.  Functional renormalization group analysis of rank-3 tensorial group field theory: The full quartic invariant truncation , 2018, Physical Review D.

[24]  On background-independent renormalization of spin foam models , 2017 .

[25]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[26]  S. Steinhaus,et al.  Time evolution as refining, coarse graining and entangling , 2013, 1311.7565.

[27]  Raymond Gastmans,et al.  Quantum gravity near two dimensions , 1978 .

[28]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[29]  Donoghue,et al.  General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.

[30]  J. Ryan,et al.  Colored Tensor Models - a Review , 2011, 1109.4812.

[31]  Jean Zinn-Justin,et al.  Critical Exponents for the N Vector Model in Three-Dimensions from Field Theory , 1977 .

[32]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .

[33]  J. Zinn-Justin,et al.  Renormalization group approach to matrix models , 1992, From Random Walks to Random Matrices.

[34]  V. Lahoche,et al.  Functional renormalization group approach for tensorial group field theory: a rank-6 model with closure constraint , 2015, 1508.06384.

[35]  Kostas Skenderis Lecture notes on holographic renormalization , 2002 .

[36]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[37]  B. Dittrich From the discrete to the continuous: towards a cylindrically consistent dynamics , 2012, 1205.6127.

[38]  V. Lahoche,et al.  Asymptotic safety in three-dimensional SU(2) group field theory: evidence in the local potential approximation , 2016, 1612.02452.

[39]  Imposing causality on a matrix model , 2008, 0812.4261.

[40]  Marcel Abendroth,et al.  Quantum Field Theory And Critical Phenomena , 2016 .

[41]  V. Rivasseau,et al.  Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions , 2014, Communications in Mathematical Physics.

[42]  Martin Reuter,et al.  Einstein–Cartan gravity, Asymptotic Safety, and the running Immirzi parameter , 2013, 1301.5135.

[43]  Holger Gies Renormalizability of gauge theories in extra dimensions , 2003 .

[44]  A. Eichhorn,et al.  Flowing to the continuum in discrete tensor models for quantum gravity , 2017, 1701.03029.

[45]  D. O. Samary Closed equations of the two-point functions for tensorial group field theory , 2014, 1401.2096.

[46]  T. Thiemann,et al.  Hamiltonian renormalisation I: derivation from Osterwalder–Schrader reconstruction , 2017, Classical and Quantum Gravity.

[47]  Joseph Ben Geloun,et al.  A Renormalizable 4-Dimensional Tensor Field Theory , 2011, 1111.4997.

[48]  N. Turok,et al.  Lorentzian quantum cosmology , 2017, 1703.02076.

[49]  David J. Gross,et al.  A Nonperturbative Treatment of Two-dimensional Quantum Gravity , 1990 .

[50]  Group Field Theory: An Overview , 2005, hep-th/0505016.

[51]  D. O. Samary,et al.  3D Tensor Field Theory: Renormalization and One-Loop β-Functions , 2013 .

[52]  Riccardo Martini,et al.  Functional Renormalization Group analysis of a Tensorial Group Field Theory on , 2015, 1508.01855.

[53]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[54]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[55]  Masao Ninomiya,et al.  Renormalization Group and Quantum Gravity , 1990 .

[56]  Sebastian Steinhaus,et al.  Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity. , 2016, Physical review letters.

[57]  T. Krajewski,et al.  Exact Renormalisation Group Equations and Loop Equations for Tensor Models , 2016, 1603.00172.

[58]  Vincent Rivasseau,et al.  The 1/N expansion of colored tensor models in arbitrary dimension , 2011, 1101.4182.

[59]  A. Codello,et al.  Polyakov effective action from functional renormalization group equation , 2010, 1004.2171.

[60]  Astrid Eichhorn,et al.  An Asymptotically Safe Guide to Quantum Gravity and Matter , 2018, Front. Astron. Space Sci..

[61]  Critical exponents of the N-vector model , 1998, cond-mat/9803240.

[62]  E. Livine,et al.  Some classes of renormalizable tensor models , 2012, 1207.0416.

[63]  J. Jurkiewicz,et al.  Nonperturbative quantum de Sitter universe , 2008, 0807.4481.

[64]  V. Rivasseau The tensor track, III , 2013, 1311.1461.

[65]  F. Eckert,et al.  Coarse graining methods for spin net and spin foam models , 2011, 1109.4927.

[66]  V. Bonzom Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2 , 2016, 1603.03570.

[67]  Oliver J. Rosten Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.

[68]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[69]  V. Kazakov The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity , 1989 .

[70]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[71]  J. Laiho,et al.  Lattice Quantum Gravity and Asymptotic Safety , 2016, 1604.02745.

[72]  E. Schnetter,et al.  Coarse graining flow of spin foam intertwiners , 2016, 1609.02429.

[73]  J. B. Geloun Two- and four-loop β-functions of rank-4 renormalizable tensor field theories , 2012, 1205.5513.

[74]  Sylvain Carrozza,et al.  Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions , 2012, 1207.6734.

[75]  J. Jurkiewicz,et al.  Second-order phase transition in causal dynamical triangulations. , 2011, Physical review letters.

[76]  E. Schnetter,et al.  Coarse graining of spin net models: dynamics of intertwiners , 2013, 1306.2987.

[77]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[78]  Riccardo Martini,et al.  Functional Renormalisation Group analysis of Tensorial Group Field Theories on $\mathbb{R}^d$ , 2016, 1601.08211.

[79]  R. Adams Proceedings , 1947 .

[80]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[81]  T. Morris,et al.  Large curvature and background scale independence in single-metric approximations to asymptotic safety , 2016, 1610.03081.

[82]  Ulrich Ellwanger Flow equations forN point functions and bound states , 1994 .

[83]  R. Gurau The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.

[84]  I. Boettcher Scaling relations and multicritical phenomena from functional renormalization. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  S. Steinhaus,et al.  Hypercuboidal renormalization in spin foam quantum gravity , 2017, 1701.02311.

[86]  R. Loll,et al.  Causal Dynamical Triangulations without preferred foliation , 2013, 1305.4582.

[87]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[88]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[89]  Razvan Gurau,et al.  Colored Group Field Theory , 2009, 0907.2582.

[90]  J. B. Geloun,et al.  Functional renormalisation group approach for tensorial group field theory: a rank-3 model , 2014, Journal of High Energy Physics.

[91]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[92]  Nonlinear renormalization group equation for matrix models , 1993, hep-th/9307116.

[93]  Michael E. Peskin,et al.  Critical point behavior of the Wilson loop , 1980 .

[94]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[95]  Vincent Rivasseau,et al.  Quantum Gravity and Renormalization: The Tensor Track , 2011, 1112.5104.

[96]  Towards coarse graining of discrete Lorentzian quantum gravity , 2017, 1709.10419.

[97]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[98]  J. B. Geloun Renormalizable Models in Rank $${d \geq 2}$$d≥2 Tensorial Group Field Theory , 2013, 1306.1201.

[99]  Renormalization group flow in one- and two-matrix models , 1994, hep-th/9409009.

[100]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[101]  Sylvain Carrozza,et al.  Flowing in Group Field Theory Space: a Review , 2016, 1603.01902.

[102]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[103]  Kevin Falls,et al.  Renormalization of Newton's constant , 2015, 1501.05331.

[104]  Adrian Tanasa,et al.  O(N) Random Tensor Models , 2015, 1512.06718.

[105]  Astrid Eichhorn,et al.  Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter , 2017, Foundations of physics.

[106]  R. Loll,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .

[107]  T. Morris,et al.  Renormalizable extra-dimensional models , 2005 .

[108]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[109]  Peter Labus,et al.  Effective universality in quantum gravity , 2018, SciPost Physics.

[110]  Alejandro Perez,et al.  The Spin-Foam Approach to Quantum Gravity , 2012, Living reviews in relativity.

[111]  Herbert W. Hamber,et al.  Quantum gravity on the lattice , 2009, 0901.0964.

[112]  M. Swift,et al.  MOD , 2020, Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.

[113]  M. Scherer,et al.  Multicritical behavior in models with two competing order parameters. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  Valentin Bonzom,et al.  Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.

[115]  J. Cardy Is There a c Theorem in Four-Dimensions? , 1988 .

[116]  Kupiainen,et al.  Renormalizing the nonrenormalizable. , 1985, Physical review letters.

[117]  Astrid Eichhorn,et al.  Continuum limit in matrix models for quantum gravity from the Functional Renormalization Group , 2013, 1309.1690.

[118]  R. Gurau The complete 1/N expansion of a SYK–like tensor model , 2016, 1611.04032.

[119]  Bianca Dittrich,et al.  Towards a phase diagram for spin foams , 2016, 1612.04506.

[120]  Steven Carlip,et al.  Dimension and dimensional reduction in quantum gravity , 2017, Universe.

[121]  D. O. Samary,et al.  Functional renormalization group for the U(1)-T-5(6) tensorial group field theory with closure constraint , 2016, 1608.00379.

[122]  Astrid Eichhorn,et al.  Towards phase transitions between discrete and continuum quantum spacetime from the Renormalization Group , 2014, 1408.4127.

[123]  V. Rivasseau Random Tensors and Quantum Gravity , 2016, 1603.07278.