Combining Semilattices and Semimodules

We describe the canonical weak distributive law \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta :\mathcal S\mathcal P\rightarrow \mathcal P\mathcal S$$\end{document}δ:SP→PS of the powerset monad \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P$$\end{document}P over the S-left-semimodule monad \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S$$\end{document}S, for a class of semirings S. We show that the composition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P$$\end{document}P with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S$$\end{document}S by means of such \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}δ yields almost the monad of convex subsets previously introduced by Jacobs: the only difference consists in the absence in Jacobs’s monad of the empty convex set. We provide a handy characterisation of the canonical weak lifting of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P$$\end{document}P to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {EM}(\mathcal S)$$\end{document}EM(S) as well as an algebraic theory for the resulting composed monad. Finally, we restrict the composed monad to finitely generated convex subsets and we show that it is presented by an algebraic theory combining semimodules and semilattices with bottom, which are the algebras for the finite powerset monad \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P_f$$\end{document}Pf.

[1]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[2]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[3]  Jurriaan Rot,et al.  Coalgebraic Trace Semantics via Forgetful Logics , 2015, FoSSaCS.

[4]  Ichiro Hasuo Generic weakest precondition semantics from monads enriched with order , 2015, Theor. Comput. Sci..

[5]  Philip S. Mulry,et al.  MONAD COMPOSITIONS I: GENERAL CONSTRUCTIONS AND RECURSIVE DISTRIBUTIVE LAWS , 2007 .

[6]  V. E. Cazanescu Algebraic theories , 2004 .

[7]  G L Y N N W I N S K E L,et al.  Distributing probability over nondeterminism , 2005 .

[8]  Alexander Kurz,et al.  Relation lifting, a survey , 2016, J. Log. Algebraic Methods Program..

[9]  H. Peter Gumm,et al.  Monoid-labeled transition systems , 2001, CMCS.

[10]  Dirk Hofmann,et al.  The monads of classical algebra are seldom weakly cartesian , 2014 .

[11]  Jurriaan Rot,et al.  Coalgebra Learning via Duality , 2019, FoSSaCS.

[12]  Damien Pous,et al.  Hacking nondeterminism with induction and coinduction , 2015, Commun. ACM.

[13]  Dan Marsden,et al.  No-Go Theorems for Distributive Laws , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[14]  Alexandre Goy,et al.  Combining probabilistic and non-deterministic choice via weak distributive laws , 2020, LICS.

[15]  Bart Jacobs,et al.  Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems , 2008, CMCS.

[16]  Gordon D. Plotkin,et al.  Combining effects: Sum and tensor , 2006, Theor. Comput. Sci..

[17]  Jan J. M. M. Rutten,et al.  Automata and Coinduction (An Exercise in Coalgebra) , 1998, CONCUR.

[18]  G. Böhm The weak theory of monads , 2010 .

[19]  Bartek Klin,et al.  Bialgebras for structural operational semantics: An introduction , 2011, Theor. Comput. Sci..

[20]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[21]  Giuseppe Rosolini,et al.  A Category Theoretic Formulation for Engeler-style Models of the Untyped lambda , 2006, MFCSIT.

[22]  Jurriaan Rot,et al.  Coinduction up-to in a fibrational setting , 2014, CSL-LICS.

[23]  Glynn Winskel,et al.  Distributing probability over non-determinism , 2006, Mathematical Structures in Computer Science.

[24]  Ana Sokolova,et al.  The Theory of Traces for Systems with Nondeterminism and Probability , 2018, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[25]  Richard Garner The Vietoris Monad and Weak Distributive Laws , 2020, Appl. Categorical Struct..

[26]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[27]  Barbara König,et al.  Up-To Techniques for Behavioural Metrics via Fibrations , 2018, CONCUR.

[28]  Justin Hsu,et al.  Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time , 2019, Proc. ACM Program. Lang..

[29]  Alexandra Silva,et al.  A coalgebraic perspective on linear weighted automata , 2011, Inf. Comput..

[30]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[31]  Roberto Giacobazzi,et al.  Sound up-to techniques and Complete abstract domains , 2018, LICS.

[32]  Alexandre Goy,et al.  Combining Weak Distributive Laws: Application to Up-To Techniques , 2020, ArXiv.

[33]  Bartek Klin,et al.  Iterated Covariant Powerset is not a Monad , 2018, MFPS.

[34]  Jan J. M. M. Rutten,et al.  A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..

[35]  Ross Street Weak distributive laws , 2009 .

[36]  J. Isbell,et al.  Reports of the Midwest Category Seminar I , 1967 .

[37]  Bas Luttik,et al.  Up-to Techniques for Branching Bisimilarity , 2020, SOFSEM.

[38]  Corina Cîrstea,et al.  Lattice-theoretic progress measures and coalgebraic model checking , 2015, POPL.