An augmented Lagrangian approach to linear inverse problems with compound regularization

In some imaging inverse problems, it may be desired that the solution simultaneously exhibits a set of properties not enforceable by a single regularizer. To attain this goal, one may use a linear combinations of regularizers, thus encouraging the solution to simultaneously exhibit the characteristics enforced by each of them. This paper addresses the optimization problem associated with this type of compound regularization, using an alternating direction optimization algorithm. We illustrate the approach in two image deblurring problems - one in which the images are simultaneously sparse and piece-wise smooth, using a linear combination of the ℓ1 and total variation regularizers, and the other for a natural image with a combination of frame-based synthesis and analysis ℓ1 norm regularizers.

[1]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[2]  Patrick L. Combettes,et al.  A forward-backward algorithm for image restoration with sparse representations , 2005 .

[3]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[4]  José M. Bioucas-Dias,et al.  Frame-based deconvolution of Poissonian images using alternating direction optimization , 2010, 2010 IEEE International Conference on Image Processing.

[5]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[6]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[7]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[8]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[9]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[12]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[13]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[14]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[15]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[16]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[17]  José M. Bioucas-Dias,et al.  An iterative algorithm for linear inverse problems with compound regularizers , 2008, 2008 15th IEEE International Conference on Image Processing.

[18]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[19]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[20]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[21]  Volkan Cevher,et al.  Compressive Sensing for Background Subtraction , 2008, ECCV.

[22]  Jacques Froment,et al.  Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..

[23]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[24]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[25]  François Malgouyres,et al.  Minimizing the total variation under a general convex constraint for image restoration , 2002, IEEE Trans. Image Process..

[26]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[27]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[28]  M. Hestenes Multiplier and gradient methods , 1969 .

[29]  S. Mallat A wavelet tour of signal processing , 1998 .

[30]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.