협력 필터링은 그 유용성으로 인해 현재 학문적으로나 상업적으로 널리 사용되고 있지만 확장성 문제, 평가 데이타의 희박성 문제, 초기 평가 문제 등을 안고 있다. 본 논문에서는 이러한 문제들을 일부 해결하기 위해 에이전트 간 협력에 기초한 분산 협력필터링 방법을 제안하였다. 제안 방법에서는 사용자의 평가정보를 에이전트가 지역 데이타베이스에 보관하고 이 정보를 친구들에게만 전파하는 방법을 사용함으로써 사용자 증가에 따른 확장성 문제를 해결하고자 하였다. 그리고 평가 데이타 부족에 따른 추천 질 저하를 줄이기 위해 친구 에이전트의 의견을 반영하는 방법을 사용하였고 새로운 사용자에 대해서도 추천이 가능토록 하기 위해 사용자 프로파일을 이용한 협력필터링 방법을 사용하였다. 실험결과, 본 제안 방법이 확장성뿐만 아니라 데이타 희박성 문제 및 새로운 사용자 문제에도 도움이 됨을 확인할 수 있었다.