DEL-based epistemic planning: Decidability and complexity

Abstract Epistemic planning can be used for decision making in multi-agent systems with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we present a systematic overview of known complexity and decidability results for epistemic planning based on DEL, as well as provide some new results and improved proofs of existing results based on reductions between the problems.

[1]  Sophie Pinchinat,et al.  Small Undecidable Problems in Epistemic Planning , 2018, IJCAI.

[2]  François Schwarzentruber,et al.  Hintikka's World: Agents with Higher-order Knowledge , 2018, IJCAI.

[3]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[4]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[5]  Thomas Bolander,et al.  Undecidability in Epistemic Planning , 2013, IJCAI.

[6]  Christel Baier,et al.  Principles of model checking , 2008 .

[7]  Quan Yu,et al.  Multi-Agent Epistemic Explanatory Diagnosis via Reasoning about Actions , 2013, IJCAI.

[8]  Thomas Bolander,et al.  Epistemic and Doxastic Planning , 2014 .

[9]  Thomas Bolander,et al.  Epistemic planning for single- and multi-agent systems , 2011, J. Appl. Non Class. Logics.

[10]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[11]  Jussi Rintanen,et al.  Complexity of Planning with Partial Observability , 2004, ICAPS.

[12]  Sasha Rubin,et al.  Automata Presenting Structures: A Survey of the Finite String Case , 2008, Bulletin of Symbolic Logic.

[13]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[14]  Lawrence S. Moss,et al.  The Logic of Public Announcements and Common Knowledge and Private Suspicions , 1998, TARK.

[15]  Hector Geffner,et al.  Beliefs In Multiagent Planning: From One Agent to Many , 2015, ICAPS.

[16]  François Schwarzentruber,et al.  On the Complexity of Dynamic Epistemic Logic , 2013, TARK.

[17]  Sophie Pinchinat,et al.  Uniform strategies, rational relations and jumping automata , 2015, Inf. Comput..

[18]  Ferucio Laurentiu Tiplea,et al.  Model-checking ATL under Imperfect Information and Perfect Recall Semantics is Undecidable , 2011, ArXiv.

[19]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[20]  Barteld Kooi,et al.  One Hundred Prisoners and a Light Bulb , 2015 .

[21]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 2002, JACM.

[22]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[23]  D. Premack,et al.  Does the chimpanzee have a theory of mind? , 1978, Behavioral and Brain Sciences.

[24]  Martin C. Cooper,et al.  A Simple Account of Multi-Agent Epistemic Planning , 2016, ECAI.

[25]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[26]  Christian J. Muise,et al.  Planning Over Multi-Agent Epistemic States: A Classical Planning Approach , 2015, AAAI.

[27]  W. Hoek,et al.  Dynamic Epistemic Logic , 2007 .

[28]  Alessio Lomuscio,et al.  MCMAS: an open-source model checker for the verification of multi-agent systems , 2017, International Journal on Software Tools for Technology Transfer.

[29]  François Schwarzentruber,et al.  On the Impact of Modal Depth in Epistemic Planning , 2016, IJCAI.

[30]  Bastien Maubert,et al.  Logical foundations of games with imperfect information : uniform strategies. (Fondations logiques des jeux à information imparfaite : stratégies uniformes) , 2014 .

[31]  Joao Marques-Silva,et al.  Computing with SAT Oracles: Past, Present and Future , 2018, CiE.

[32]  Sheila A. McIlraith,et al.  Epistemic Planning (Dagstuhl Seminar 17231) , 2017, Dagstuhl Reports.

[33]  Alvy Ray Smith,et al.  Simple Computation-Universal Cellular Spaces and Self-Reproduction , 1968, SWAT.

[34]  Sophie Pinchinat,et al.  Chain-Monadic Second Order Logic over Regular Automatic Trees and Epistemic Planning Synthesis , 2018, Advances in Modal Logic.

[35]  Sophie Pinchinat,et al.  Automata Techniques for Epistemic Protocol Synthesis , 2014, SR.

[36]  Rasmus Kræmmer Rendsvig,et al.  Decidability Results in First-Order Epistemic Planning , 2020, IJCAI.

[37]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[38]  Andreas Witzel,et al.  DEL Planning and Some Tractable Cases , 2011, LORI.

[39]  Jaakko Hintikka,et al.  Knowledge and Belief: An Introduction to the Logic of the Two Notions. , 1965 .

[40]  François Schwarzentruber,et al.  Complexity Results in Epistemic Planning , 2015, IJCAI.

[41]  Malte Helmert,et al.  Understanding Planning Tasks: Domain Complexity and Heuristic Decomposition , 2008, Lecture Notes in Computer Science.

[42]  Johan van Benthem,et al.  Merging Frameworks for Interaction , 2009, J. Philos. Log..

[43]  Hudson Turner,et al.  Polynomial-Length Planning Spans the Polynomial Hierarchy , 2002, JELIA.