A Two-Step Hybrid Approach for Modeling the Nonlinear Dynamic Response of Piezoelectric Energy Harvesters

An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element (FE) analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then derived, where the global dynamic response is formulated in the state-space using lumped coefficients enriched with the information derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results. Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and geometrical parameters on the global nonlinear response. The advantage of the presented approach is that the overall computational and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior.

[1]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[2]  Alex Elvin,et al.  Feasibility of structural monitoring with vibration powered sensors , 2006 .

[3]  Sergio Preidikman,et al.  Nonlinear free and forced oscillations of piezoelectric microresonators , 2006 .

[4]  Einar Halvorsen,et al.  A piezoelectric energy harvester with a mechanical end stop on one side , 2010, 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP).

[5]  Yaowen Yang,et al.  Equivalent Circuit Modeling of Piezoelectric Energy Harvesters , 2009 .

[6]  Claudio Maruccio,et al.  Numerical homogenization of piezoelectric textiles with electrospun fibers for energy harvesting , 2014 .

[7]  Luca Gammaitoni,et al.  Nonlinear noise harvesters for nanosensors , 2011, Nano Commun. Networks.

[8]  Zu-Qing Qu,et al.  Model Order Reduction Techniques with Applications in Finite Element Analysis , 2004 .

[9]  J. G. Smits,et al.  The constituent equations of piezoelectric bimorphs , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[10]  Klaus-Jürgen Bathe,et al.  On nonlinear dynamic analysis using substructuring and mode superposition , 1981 .

[11]  Claudio Maruccio,et al.  Analysis of piezoelectric energy harvester under modulated and filtered white Gaussian noise , 2018 .

[12]  Orla Feely,et al.  Electrostatic Vibration Energy Harvesters with Linear and Nonlinear Resonators , 2014, Int. J. Bifurc. Chaos.

[13]  S. Baglio,et al.  Investigation on Mechanically Bistable MEMS Devices for Energy Harvesting From Vibrations , 2012, Journal of Microelectromechanical Systems.

[14]  Claudio Maruccio,et al.  Computational homogenization of fibrous piezoelectric materials , 2014, ArXiv.

[15]  Junru Wu,et al.  Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading , 2012 .

[16]  Yaowen Yang,et al.  Modeling of geometric, material and damping nonlinearities in piezoelectric energy harvesters , 2016 .

[17]  Alex Elvin,et al.  Large deflection effects in flexible energy harvesters , 2012 .

[18]  Elena Blokhina,et al.  Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact , 2014 .

[19]  E. Halvorsen,et al.  Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting , 2011, Journal of Microelectromechanical Systems.

[20]  Chengkuo Lee,et al.  Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers , 2012 .

[21]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[22]  S Govindjee,et al.  Cyclic steady states of nonlinear electro‐mechanical devices excited at resonance , 2017 .

[23]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[24]  Luca Gammaitoni,et al.  Kinetic energy harvesting with bistable oscillators , 2012 .

[25]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[26]  D. Inman,et al.  Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification , 2010 .

[27]  Jiashi Yang,et al.  An Introduction to the Theory of Piezoelectricity , 2004 .

[28]  Hannes Bleuler,et al.  Study of polyvinylidene fluoride (PVDF) based bimorph actuators for laser scanning actuation at kHz frequency range , 2012 .

[29]  S.D. Senturia,et al.  Computer-aided generation of nonlinear reduced-order dynamic macromodels. I. Non-stress-stiffened case , 2000, Journal of Microelectromechanical Systems.

[30]  Sihong Zhao,et al.  Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs , 2012 .

[31]  Canan Dagdeviren,et al.  Cooperativity in the Enhanced Piezoelectric Response of Polymer Nanowires , 2014, Advanced materials.

[32]  Takashi Saito,et al.  Influence of Parasitic Capacitance on Output Voltage for Series-Connected Thin-Film Piezoelectric Devices , 2012, Sensors.

[33]  Richard H. Enns,et al.  Nonlinear Physics with Mathematica for Scientists and Engineers , 2001 .

[34]  Eric M. Yeatman,et al.  Microscale electrostatic energy harvester using internal impacts , 2012 .

[35]  Mostafa R. A. Nabawy,et al.  Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators , 2016, Micromachines.

[36]  Bernd Simeon,et al.  On the use of modal derivatives for nonlinear model order reduction , 2016 .

[37]  Michele Pozzi Impulse excitation of piezoelectric bimorphs for energy harvesting: a dimensionless model , 2014 .

[38]  Giuseppe Quaranta,et al.  Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge , 2016 .

[39]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[40]  Atanas A. Popov,et al.  Optimization of piezoelectric cantilever energy harvesters including non-linear effects , 2014 .

[41]  Mohammed Es-Souni,et al.  Structural and functional properties of screen-printed PZT–PVDF-TrFE composites , 2008 .

[42]  S. Senturia,et al.  Computer-aided generation of nonlinear reduced-order dynamic macromodels. II. Stress-stiffened case , 2000, Journal of Microelectromechanical Systems.

[43]  Daniel J. Inman,et al.  On the optimal energy harvesting from a vibration source using a PZT stack , 2009 .

[44]  ALI H. NAYFEH,et al.  Reduced-Order Models for MEMS Applications , 2005 .

[45]  H. H. Tawfik,et al.  Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators , 2011, Journal of Microelectromechanical Systems.

[46]  Pierre Ueberschlag,et al.  PVDF piezoelectric polymer , 2001 .

[47]  Romesh C. Batra,et al.  Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems , 2009 .

[48]  M. Younis Elements of Lumped-Parameter Modeling in MEMS , 2011 .

[49]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[50]  Paul Steinmann,et al.  Computational Nonlinear Electro-Elasticity — Getting Started — , 2011 .

[51]  Duy Son Nguyen,et al.  Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation , 2010, Journal of Microelectromechanical Systems.

[52]  Mickaël Lallart,et al.  An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output , 2008 .

[53]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[54]  T. Uhl,et al.  Modeling and simulation of piezoelectric elements - comparison of available methods and tools , 2008 .