Electrolyte design principles for low-temperature lithium-ion batteries

[1]  O. Borodin,et al.  All-temperature zinc batteries with high-entropy aqueous electrolyte , 2023, Nature Sustainability.

[2]  Yongyao Xia,et al.  Corrigendum: Synergy of Weakly-Solvated Electrolyte and Optimized Interphase Enables Graphite Anode Charge at Low Temperature. , 2022, Angewandte Chemie.

[3]  Jiaqi Huang,et al.  Operando Quantified Lithium Plating Determination Enabled by Dynamic Capacitance Measurement in Working Li-Ion Batteries. , 2022, Angewandte Chemie.

[4]  X. Liu,et al.  Hierarchical Sulfide‐Rich Modification Layer on SiO/C Anode for Low‐Temperature Li‐Ion Batteries , 2022, Advanced science.

[5]  Jiantao Han,et al.  Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries , 2022, ACS Applied Energy Materials.

[6]  Jinbao Zhao,et al.  Anion-Containing Solvation Structure Reconfiguration Enables Wide-Temperature Electrolyte for High-Energy-Density Lithium-Metal Batteries. , 2022, ACS applied materials & interfaces.

[7]  Mengchuang Liu,et al.  Balanced Solvation/De-solvation of Electrolyte Facilitates Li-ion Intercalation for Fast Charging and Low-temperature Li-ion Batteries , 2022, Nano Energy.

[8]  A. Laforgue,et al.  Comparative investigation of the impact of fast charging at low temperature on commercial Li-ion cells , 2022, Journal of Power Sources.

[9]  Kristin A. Persson,et al.  Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries. , 2022, ACS applied materials & interfaces.

[10]  D. Yu,et al.  An All‐Fluorinated Electrolyte Toward High Voltage and Long Cycle Performance Dual‐Ion Batteries , 2022, Advanced Energy Materials.

[11]  L. Archer,et al.  Upgrading Carbonate Electrolytes for Ultra-stable Practical Lithium Metal Batteries. , 2021, Angewandte Chemie.

[12]  Xiulin Fan,et al.  Critical Review on Low‐Temperature Li‐Ion/Metal Batteries , 2021, Advanced materials.

[13]  Cyrus S. Rustomji,et al.  High-Efficiency Zinc-Metal Anode Enabled by Liquefied Gas Electrolytes , 2021, ACS Energy Letters.

[14]  Xiao‐Qing Yang,et al.  A new cyclic carbonate enables high power/ low temperature lithium-ion batteries , 2021, Energy Storage Materials.

[15]  Yongyao Xia,et al.  Promoting Rechargeable Batteries Operated at Low Temperature. , 2021, Accounts of chemical research.

[16]  Liang Deng,et al.  Self-Optimizing Weak Solvation Effects Achieving Faster Low-Temperature Charge Transfer Kinetics for High-Voltage Na3V2(PO4)2F3 cathode , 2021, Energy Storage Materials.

[17]  Junli Zhang,et al.  Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. , 2021, Chemistry.

[18]  Limin Wang,et al.  Interfacial Model Deciphering High‐Voltage Electrolytes for High Energy Density, High Safety, and Fast‐Charging Lithium‐Ion Batteries , 2021, Advanced materials.

[19]  Xiulin Fan,et al.  High-voltage liquid electrolytes for Li batteries: progress and perspectives. , 2021, Chemical Society reviews.

[20]  Weishan Li,et al.  Hydrolysis of LiPF6-Containing Electrolyte at High Voltage , 2021 .

[21]  P. He,et al.  A Safe and Sustainable Lithium‐Ion–Oxygen Battery based on a Low‐Cost Dual‐Carbon Electrodes Architecture , 2021, Advanced materials.

[22]  Y. Meng,et al.  Enabling the Low-Temperature Cycling of NMC||Graphite Pouch Cells with an Ester-Based Electrolyte , 2021, ACS Energy Letters.

[23]  Jiaqi Huang,et al.  The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries. , 2021, Angewandte Chemie.

[24]  T. Gao,et al.  Interplay of Lithium Intercalation and Plating on a Single Graphite Particle , 2021, Joule.

[25]  Ping Liu,et al.  Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature , 2021, Nature Energy.

[26]  P. He,et al.  Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries , 2020 .

[27]  Ji‐Guang Zhang,et al.  Lithium Metal Anodes with Nonaqueous Electrolytes. , 2020, Chemical reviews.

[28]  Ji‐Guang Zhang,et al.  Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO2 Batteries , 2020, Advanced materials.

[29]  Jiaqi Huang,et al.  Inhibiting Solvent Co-Intercalation in Graphite Anode by Localized High-Concentration Electrolyte in Fast-Charging Batteries. , 2020, Angewandte Chemie.

[30]  J. Yu,et al.  Rechargeable Battery Electrolytes Capable of Operating over Wide Temperature Windows and Delivering High Safety , 2020, Advanced Energy Materials.

[31]  Jiaqi Huang,et al.  Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly-Solvating Electrolyte. , 2020, Angewandte Chemie.

[32]  Hui‐Ming Cheng,et al.  Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature , 2020, Advanced Functional Materials.

[33]  P. He,et al.  A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery , 2020 .

[34]  A. Manthiram,et al.  Designing Advanced Lithium‐Based Batteries for Low‐Temperature Conditions , 2020, Advanced energy materials.

[35]  Xiaodong Chen,et al.  Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to −130 °C , 2020 .

[36]  Yongyao Xia,et al.  Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature. , 2020, Chemical communications.

[37]  Ping Liu,et al.  An ester electrolyte for lithium-sulfur batteries capable of ultra-low temperature cycling. , 2020, Chemical communications.

[38]  Pralav P. Shetty,et al.  Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase , 2020 .

[39]  Donghai Wang,et al.  Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface , 2020 .

[40]  Cyrus S. Rustomji,et al.  Liquefied Gas Electrolytes for Wide-Temperature Lithium Metal Batteries , 2020, ECS Meeting Abstracts.

[41]  Ping Liu,et al.  An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation , 2020, ACS Energy Letters.

[42]  Junliang Zhang,et al.  Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C , 2020, Advanced Energy Materials.

[43]  Y. Meng,et al.  Exploiting Mechanistic Solvation Kinetics for Dual-Graphite Batteries with High Power Output at Extremely Low Temperature. , 2019, Angewandte Chemie.

[44]  Xiulin Fan,et al.  All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents , 2019, Nature Energy.

[45]  Jiulin Wang,et al.  Highly reversible lithium metal anode and lithium-sulfur batteries enabled by an intrinsic safe electrolyte. , 2019, ACS applied materials & interfaces.

[46]  Jianning Ding,et al.  Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance , 2019, Journal of Power Sources.

[47]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[48]  Cyrus S. Rustomji,et al.  High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes , 2019, Joule.

[49]  L. Cavallo,et al.  Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries , 2019, ACS Energy Letters.

[50]  Yongyao Xia,et al.  High-Energy Rechargeable Metallic Lithium Battery at -70 °C Enabled by a Cosolvent Electrolyte. , 2019, Angewandte Chemie.

[51]  V. A. Nikitina,et al.  Diagnostics of lithium-ion intercalation rate-determining step: Distinguishing between slow desolvation and slow charge transfer , 2019, Electrochimica Acta.

[52]  K. Amine,et al.  Solvating power series of electrolyte solvents for lithium batteries , 2019, Energy & Environmental Science.

[53]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[54]  Jiulin Wang,et al.  An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries. , 2018, Angewandte Chemie.

[55]  Zonghai Chen,et al.  The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium-Sulfur Batteries. , 2018, Angewandte Chemie.

[56]  Kang Xu,et al.  Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries , 2018, Chem.

[57]  Zhaoping Liu,et al.  Hybrid electrolytes incorporated with dandelion-like silane–Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries , 2018, Journal of Power Sources.

[58]  Yongyao Xia,et al.  Organic Batteries Operated at −70°C , 2018 .

[59]  Ji‐Guang Zhang,et al.  High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes , 2018, Advanced materials.

[60]  Kang Xu,et al.  Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries. , 2018, Accounts of chemical research.

[61]  Liumin Suo,et al.  Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries , 2018, Proceedings of the National Academy of Sciences.

[62]  Ji‐Guang Zhang,et al.  Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives , 2018 .

[63]  Kang Xu,et al.  Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries , 2018 .

[64]  Jianming Zheng,et al.  Li+-Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances. , 2017, ACS applied materials & interfaces.

[65]  Pulickel M. Ajayan,et al.  A materials perspective on Li-ion batteries at extreme temperatures , 2017, Nature Energy.

[66]  Kevin G. Gallagher,et al.  Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries , 2017, ACS central science.

[67]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[68]  Tae Kyoung Kim,et al.  Liquefied gas electrolytes for electrochemical energy storage devices , 2017, Science.

[69]  Yuki Yamada,et al.  Superconcentrated electrolytes for a high-voltage lithium-ion battery , 2016, Nature Communications.

[70]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[71]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[72]  G. G. Eshetu,et al.  Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts , 2014 .

[73]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[74]  G. G. Eshetu,et al.  LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives , 2013 .

[75]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[76]  Yun-Sung Lee,et al.  The study of electrochemical properties and lithium deposition of graphite at low temperature , 2012 .

[77]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[78]  Weishan Li,et al.  Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive , 2007 .

[79]  T. Jow,et al.  Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB , 2006 .

[80]  R. Staniewicz,et al.  Improved low temperature performance of lithium ion cells with quaternary carbonate-based electrolytes , 2003 .

[81]  Kang Xu,et al.  The low temperature performance of Li-ion batteries , 2003 .

[82]  Kang Xu,et al.  Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte , 2003 .

[83]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[84]  Subbarao Surampudi,et al.  Use of Organic Esters as Cosolvents in Electrolytes for Lithium-Ion Batteries with Improved Low Temperature Performance , 2002 .

[85]  Hsiu-Ping Lin,et al.  Low-Temperature Behavior of Li-Ion Cells , 2001 .

[86]  Subbarao Surampudi,et al.  Development of low temperature Li-ion electrolytes for NASA and DoD applications , 2001 .

[87]  J. Sakamoto,et al.  The Limits of Low‐Temperature Performance of Li‐Ion Cells , 2000 .

[88]  Hsiu-Ping Lin,et al.  Low temperature electrolytes for Li-ion PVDF cells , 2000 .

[89]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[90]  B. Ratnakumar,et al.  Irreversible Capacities of Graphite in Low‐Temperature Electrolytes for Lithium‐Ion Batteries , 1999 .

[91]  B. Ratnakumar,et al.  Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates , 1999 .

[92]  Yair Ein-Eli,et al.  Li‐Ion Battery Electrolyte Formulated for Low‐Temperature Applications , 1997 .

[93]  John Holoubek,et al.  Electrolyte Design Implications of Ion-Pairing in Low-Temperature Li Metal Batteries , 2022, Energy & Environmental Science.

[94]  L. Liao,et al.  Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode , 2013 .

[95]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[96]  G. Nagasubramanian Electrical characteristics of 18650 Li-ion cells at low temperatures , 2001 .