Design of RF-CMOS integrated circuits for wireless communication

The emergence of digital mobile broadband communication systems for voice, data, multimedia and positioning is coupled to the continuous progress of silicon CMOS-technology. Single chip integration with digital part, high integration density, low power consumption, low cost under mass production aspects and excellent RF performance are the current system design challenges. This paper focuses on design issues of classical RF-transceiver function blocks like LNAs, PAs, VCOs and mixers in context with multimode-/ multiband- SoC challenges. State of the art achievements are presented and an outlook on future RF-CMOS integration trends is given.

[1]  D.J. Allstot,et al.  Design considerations for CMOS low-noise amplifiers , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[2]  S.S. Wong,et al.  Scalability of RF CMOS , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[3]  Meng-Chang Lee,et al.  All-digital PLL and GSM/EDGE transmitter in 90nm CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[4]  A. Fard,et al.  A 2.3GHz LC-tank CMOS VCO with optimal phase noise performance , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[5]  G. Boeck,et al.  A 2.14 GHz, 0.78 dB noise figure CMOS low noise amplifier , 2005, The European Conference on Wireless Technology, 2005..

[6]  A. Fard,et al.  A reconfigurable CMOS VCO with an automatic amplitude controller for multi-band RF front-ends , 2005, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005..

[7]  B.A. Floyd,et al.  Low-noise amplifier comparison at 2 GHz in 0.25-/spl mu/m and 0.18-/spl mu/m RF-CMOS and SiGe BiCMOS , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[8]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[9]  A.H.M. van Roermund,et al.  A low-voltage folded-switching mixer in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[10]  D. Pozar Microwave Engineering , 1990 .

[11]  Sang-Gug Lee,et al.  Low noise and high gain CMOS down conversion mixer , 2004, 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914).

[12]  J. Laskar,et al.  A fully monolithic 260-/spl mu/W, 1-GHz subthreshold low noise amplifier , 2005, IEEE Microwave and Wireless Components Letters.

[13]  Jeng-Han Tsai,et al.  A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology , 2007, IEEE Microwave and Wireless Components Letters.

[14]  F. Ellinger 26-42 GHz SOI CMOS low noise amplifier , 2004, IEEE Journal of Solid-State Circuits.

[15]  Bumman Kim,et al.  A Ultra-High PAE Doherty Amplifier Basedon 0.13-$mu$m CMOS Process , 2006, IEEE Microwave and Wireless Components Letters.

[16]  T.H. Lee,et al.  CMOS RF integrated circuits at 5 GHz and beyond , 2000, Proceedings of the IEEE.

[17]  F. Hooge 1/f noise sources , 1994 .

[18]  Q. Li,et al.  Linearity analysis and design optimisation for 0.18 /spl mu/m CMOS RF mixer , 2002 .

[19]  T. Manku,et al.  A charge-injection method for Gilbert cell biasing , 1998, Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341).

[20]  Eric Hanssen,et al.  Low voltage, low power folded-switching mixer with current-reuse in 0.18 /spl mu/m CMOS , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[21]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[22]  S. Park,et al.  The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application , 2005, IEEE Transactions on Electron Devices.

[23]  Yeo Kiat Seng,et al.  A modified architecture used for input matching in CMOS low-noise amplifiers , 2005 .

[24]  Xiaoling Guo A power efficient differential 20-GHz low noise amplifier with 5.3-GHz 3-dB bandwidth , 2005 .

[25]  R. Circa,et al.  Resistive MOSFET mixer for mobile direct conversion receivers , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[26]  Hongyi Chen,et al.  A 5-GHz CMOS front-end circuit with low power, low noise and variable gain for WLAN applications , 2003, 2003 International Symposium on VLSI Technology, Systems and Applications. Proceedings of Technical Papers. (IEEE Cat. No.03TH8672).

[27]  R. Circa,et al.  Reconfigurable receiver approach for 4G terminals and beyond , 2005, The 3rd International IEEE-NEWCAS Conference, 2005..

[28]  Georg Böck,et al.  Shot-Noise Analysis in Circuits with Large Signal Excitations using Harmonic Balance Simulators , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[29]  Ran-Hong Yan,et al.  5 GHz CMOS radio transceiver front-end chipset , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[30]  Danilo Manstretta,et al.  Second-order intermodulation mechanisms in CMOS downconverters , 2003, IEEE J. Solid State Circuits.

[31]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.