A Survey of Compositional Signal Flow Theory

[1]  S. Maclane,et al.  Categorical Algebra , 2007 .

[2]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[3]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[4]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[5]  Brendan Fong,et al.  A compositional framework for Markov processes , 2015, 1508.06448.

[6]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[7]  Roberto Bruni,et al.  A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..

[8]  Aleks Kissinger,et al.  Open-graphs and monoidal theories† , 2010, Mathematical Structures in Computer Science.

[9]  Filippo Bonchi,et al.  Contextual Equivalence for Signal Flow Graphs , 2020, FoSSaCS.

[10]  Roberto Bruni,et al.  Connector Algebras, Petri Nets, and BIP , 2011, Ershov Memorial Conference.

[11]  Jan J. M. M. Rutten,et al.  A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..

[12]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[13]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[14]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[15]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[16]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[17]  Marcello M. Bonsangue,et al.  (Co)Algebraic Characterizations of Signal Flow Graphs , 2014, Horizons of the Mind.

[18]  Fabio Zanasi,et al.  The Algebra of Partial Equivalence Relations , 2016, MFPS.

[19]  Dusko Pavlovic,et al.  Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..

[20]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[21]  Samuel Mimram,et al.  The Structure of First-Order Causality , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[22]  Filippo Bonchi,et al.  The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..