A Survey of Compositional Signal Flow Theory
暂无分享,去创建一个
[1] S. Maclane,et al. Categorical Algebra , 2007 .
[2] Filippo Bonchi,et al. A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.
[3] Rocco De Nicola,et al. Testing Equivalences for Processes , 1984, Theor. Comput. Sci..
[4] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[5] Brendan Fong,et al. A compositional framework for Markov processes , 2015, 1508.06448.
[6] Yves Lafont,et al. Towards an algebraic theory of Boolean circuits , 2003 .
[7] Roberto Bruni,et al. A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..
[8] Aleks Kissinger,et al. Open-graphs and monoidal theories† , 2010, Mathematical Structures in Computer Science.
[9] Filippo Bonchi,et al. Contextual Equivalence for Signal Flow Graphs , 2020, FoSSaCS.
[10] Roberto Bruni,et al. Connector Algebras, Petri Nets, and BIP , 2011, Ershov Memorial Conference.
[11] Jan J. M. M. Rutten,et al. A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..
[12] Miriam Backens,et al. The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.
[13] Filippo Bonchi,et al. Interacting Hopf Algebras , 2014, ArXiv.
[14] Robin Milner,et al. A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.
[15] James L. Peterson,et al. Petri Nets , 1977, CSUR.
[16] Masahito Hasegawa,et al. Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.
[17] Marcello M. Bonsangue,et al. (Co)Algebraic Characterizations of Signal Flow Graphs , 2014, Horizons of the Mind.
[18] Fabio Zanasi,et al. The Algebra of Partial Equivalence Relations , 2016, MFPS.
[19] Dusko Pavlovic,et al. Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..
[20] A. Carboni,et al. Cartesian bicategories I , 1987 .
[21] Samuel Mimram,et al. The Structure of First-Order Causality , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.
[22] Filippo Bonchi,et al. The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..