Two-dimensional and three-dimensional finite element models of external thread rolling

Abstract In the present study, the DEFORM computer code was used to develop two-dimensional and three-dimensional finite element models for simulating external thread rolling. To simulate rolling in two dimensions, a plane strain model was used where the thread is assumed to form through progressive penetration of the blank surface using a parallel set of wedge-shaped indenters. To develop the three-dimensional model, a flat-die rolling process was simulated which incorporated blank rotation, die movement and pitch angle on the die faces. Based on a comparison of thread form and microhardness with as-rolled threads, the plane strain model was found to provide a reasonable approximation of thread-rolling behaviour. Results obtained from the initial pass of the three-dimensional model are promising although progress is currently limited by the excessive computational time needed, frequency of remeshing and sliding at the die-blank interface.