Metabolomics Data Processing Using OpenMS.

This chapter describes the open-source tool suite OpenMS. OpenMS contains more than 180 tools which can be combined to build complex and flexible data-processing workflows. The broad range of functionality and the interoperability of these tools enable complex, complete, and reproducible data analysis workflows in computational proteomics and metabolomics. We introduce the key concepts of OpenMS and illustrate its capabilities with a complete workflow for the analysis of untargeted metabolomics data, including metabolite quantification and identification.

[1]  Robert Burke,et al.  ProteoWizard: open source software for rapid proteomics tools development , 2008, Bioinform..

[2]  K. Reinert,et al.  OpenMS: a flexible open-source software platform for mass spectrometry data analysis , 2016, Nature Methods.

[3]  Lars Malmström,et al.  pyOpenMS: A Python‐based interface to the OpenMS mass‐spectrometry algorithm library , 2014, Proteomics.

[4]  Zsuzsanna Lipták,et al.  SIRIUS: decomposing isotope patterns for metabolite identification , 2008, Bioinform..

[5]  Andreas Zell,et al.  Automated Label-free Quantification of Metabolites from Liquid Chromatography–Mass Spectrometry Data* , 2013, Molecular & Cellular Proteomics.

[6]  M. Hirai,et al.  MassBank: a public repository for sharing mass spectral data for life sciences. , 2010, Journal of mass spectrometry : JMS.

[7]  Lennart Martens,et al.  mzML—a Community Standard for Mass Spectrometry Data* , 2010, Molecular & Cellular Proteomics.

[8]  Michael R Berthold,et al.  KNIME for reproducible cross-domain analysis of life science data. , 2017, Journal of biotechnology.

[9]  David S. Wishart,et al.  HMDB 4.0: the human metabolome database for 2018 , 2017, Nucleic Acids Res..

[10]  Knut Reinert,et al.  A geometric approach for the alignment of liquid chromatography - mass spectrometry data , 2007, ISMB/ECCB.

[11]  Andreas Quandt,et al.  An automated pipeline for high-throughput label-free quantitative proteomics. , 2013, Journal of proteome research.

[12]  S. Böcker,et al.  Searching molecular structure databases with tandem mass spectra using CSI:FingerID , 2015, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Liliane Mouawad,et al.  vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available , 2016, Journal of Cheminformatics.

[14]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[15]  Oliver Kohlbacher,et al.  TOPPView: an open-source viewer for mass spectrometry data. , 2009, Journal of proteome research.

[16]  Knut Reinert,et al.  OpenMS - A platform for reproducible analysis of mass spectrometry data. , 2017, Journal of biotechnology.

[17]  K. Reinert,et al.  Optimal decharging and clustering of charge ladders generated in ESI-MS. , 2010, Journal of proteome research.

[18]  Sebastian Böcker,et al.  Fragmentation trees reloaded , 2014, Journal of Cheminformatics.

[19]  R. Beavis,et al.  A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. , 2003, Analytical chemistry.