System-level timing feasibility test for cyber-physical automotive systems

For automotive systems there is a mismatch between worst-case timing analysis models and the perceived reality, diminishing their relevance, especially for the automotive powertrain domain. Strict worst-case guarantees are rarely needed in the powertrain domain. The reason is that a large amount of functionality is control software and this can tolerate sporadic deadline misses. For instance, certain control approaches can systematically account for sampling losses and still prove whether or not the controller is stable and adheres to required performance criteria. Typical worst-case analysis (TWCA) tackles this problem by providing formal guarantees on typical response-times including upper bounds on the number of violations of these. In this paper, we derive a system-level timing feasibility test exploiting the robustness of control applications based on TWCA. We extend the TWCA to cope with periodic tasks that have varying execution times. Taking the robustness of control applications into account, we derive upper bounds for the overload models of each task, along with possible typical worst-case execution times (TCET), as needed for the TWCA. We then use this information to find a feasible typical-case configuration such that all deadlines are reached and all robustness constraints are satisfied. To verify the approach and show the expressiveness, we apply it on a performance model of a full-blown modern engine management system provided by Bosch.

[1]  Rolf Ernst,et al.  Typical worst case response-time analysis and its use in automotive network design , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[2]  Joaquín Entrialgo,et al.  Stochastic analysis of real-time systems under preemptive priority-driven scheduling , 2008, Real-Time Systems.

[3]  Lothar Thiele,et al.  A general framework for analysing system properties in platform-based embedded system designs , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[4]  Bruno Sinopoli,et al.  Foundations of Control and Estimation Over Lossy Networks , 2007, Proceedings of the IEEE.

[5]  Lothar Thiele,et al.  Quantifying the Effect of Rare Timing Events with Settling-Time and Overshoot , 2012, 2012 IEEE 33rd Real-Time Systems Symposium.

[6]  John P. Lehoczky,et al.  Fixed priority scheduling of periodic task sets with arbitrary deadlines , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[7]  Rolf Ernst,et al.  Extending typical worst-case analysis using response-time dependencies to bound deadline misses , 2014, 2014 International Conference on Embedded Software (EMSOFT).

[8]  Mathai Joseph,et al.  Finding Response Times in a Real-Time System , 1986, Comput. J..

[9]  Jean-Yves Le Boudec,et al.  Network Calculus: A Theory of Deterministic Queuing Systems for the Internet , 2001 .

[10]  Sanjoy K. Baruah,et al.  The feasibility analysis of multiprocessor real-time systems , 2006, 18th Euromicro Conference on Real-Time Systems (ECRTS'06).

[11]  Rolf Ernst,et al.  Formal analysis of sporadic overload in real-time systems , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[12]  Rolf Ernst,et al.  System level performance analysis - the SymTA/S approach , 2005 .

[13]  Alan Burns,et al.  An extendible approach for analyzing fixed priority hard real-time tasks , 1994, Real-Time Systems.

[14]  Alan Burns,et al.  Controller Area Network (CAN) schedulability analysis: Refuted, revisited and revised , 2007, Real-Time Systems.

[15]  Rolf Ernst,et al.  Context-aware performance analysis for efficient embedded system design , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[16]  Alan Burns,et al.  Weakly Hard Real-Time Systems , 2001, IEEE Trans. Computers.

[17]  Giorgio C. Buttazzo,et al.  Sensitivity Analysis for Fixed-Priority Real-Time Systems , 2006, ECRTS.

[18]  Sanjoy K. Baruah,et al.  A Response-Time Bound in Fixed-Priority Scheduling with Arbitrary Deadlines , 2009, IEEE Transactions on Computers.

[19]  Liliana Cucu-Grosjean,et al.  PROARTIS: Probabilistically Analyzable Real-Time Systems , 2013, TECS.