Crust and upper mantle structure in central Brazil derived by receiver functions and SKS splitting analysis

[1]  André Menezes Sabóia O vulcanismo em Monte do Carmo e litoestratigrafia do grupo Natividade, estado de Tocantins , 2011 .

[2]  M. Oliveira,et al.  Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian craton, Brazil , 2009 .

[3]  B. D. B. Neves,et al.  Rodinia descendants in South America , 2008 .

[4]  Dhananjay Ravat,et al.  National Geophysical Data Center candidate for the World Digital Magnetic Anomaly Map , 2007 .

[5]  W. Mooney,et al.  Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study , 2006 .

[6]  A. Vauchez,et al.  Upper mantle anisotropy in SE and Central Brazil from SKS splitting: Evidence of asthenospheric flow around a cratonic keel , 2006 .

[7]  B. Hieronymus,et al.  Disrupted peridotites and basalts from the Neoproterozoic Araguaia belt (northern Brazil): Remnants of a poorly evolved oceanic crust? , 2005 .

[8]  E. Dantas,et al.  Deep seismic refraction and gravity crustal model and tectonic deformation in Tocantins Province, Central Brazil , 2004 .

[9]  M. P. Rocha,et al.  Seismic studies of the Brasília fold belt at the western border of the São Francisco Craton, Central Brazil, using receiver function, surface-wave dispersion and teleseismic tomography , 2004 .

[10]  S. Maus,et al.  CHAMP satellite and terrestrial magnetic data help define the tectonic model for South America and resolve the lingering problem of the pre-break-up fit of the South Atlantic Ocean , 2003 .

[11]  A. Vauchez,et al.  Shear wave splitting in SE Brazil: an effect of active or fossil upper mantle flow, or both?☆ , 2003 .

[12]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[13]  G. Bokelmann Which forces drive North America , 2002 .

[14]  R. Kind,et al.  Combined analysis of SKS splitting and regional P traveltimes in Siberia , 2002 .

[15]  F. Scherbaum,et al.  Crustal and upper mantle structure in the Amazon region (Brazil) determined with broadband mobile stations , 2002 .

[16]  Silvia Helena de Souza Arcanjo Evolução geológica das seqüências do embasamento na porção sul do Cinturão Araguaia - Região de Paraíso do Tocantins , 2002 .

[17]  B. Kennett,et al.  Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion , 2000 .

[18]  J. Lavé,et al.  How to relate body wave and surface wave anisotropy , 2000 .

[19]  Michael E. Wysession,et al.  Shear wave splitting, continental keels, and patterns of mantle flow , 2000 .

[20]  T. Wallace,et al.  Shear wave anisotropy beneath the Andes from the BANJO, SEDA, and PISCO experiments , 2000 .

[21]  C. Moura,et al.  Pb-Pb zircon ages of the porto nacional high-grade metamorphic terrain, northern portion of the Goiás massif, central Brazil , 2000 .

[22]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[23]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[24]  E. Sandvol,et al.  Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment , 1997 .

[25]  M. Assumpção,et al.  Tectonic implications of S-wave anisotropy beneath SE Brazil , 1996 .

[26]  R. Russo,et al.  Shear-wave splitting in northeast Venezuela, Trinidad, and the eastern Caribbean , 1996 .

[27]  L. Nicolaysen,et al.  Seismic constraints on dynamics of the mantle of the Kaapvaal craton , 1996 .

[28]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[29]  R. Kind,et al.  Receiver functions at the stations of the German Regional Seismic Network (GRSN) , 1995 .

[30]  A. Vauchez,et al.  Self-indentation of a heterogeneous continental lithosphere , 1994 .

[31]  P. Bormann,et al.  Shear wave splitting in the records of the German Regional Seismic Network , 1994 .

[32]  R. Russo,et al.  Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy , 1994, Science.

[33]  R. Kind,et al.  Sharpness of the mantle discontinuities , 1993 .

[34]  A. Milev,et al.  Global patterns of azimuthal anisotropy and deformations in the continental mantle , 1992 .

[35]  M. Blum,et al.  The Goias Seismic Zone - A New Approach , 1991 .

[36]  Paul G. Silver,et al.  Implications for continental structure and evolution from seismic anisotropy , 1988, Nature.

[37]  W. Hinze,et al.  MAGSAT scalar anomaly map of South America , 1986 .

[38]  M. Mantovani,et al.  Analysis of a large extent aeromagnetic survey near the geomagnetic equator (Minas Gerais, Brazil) , 1982 .

[39]  Y. Hasui,et al.  Brazilian structural provinces: An introduction , 1981 .

[40]  Charles A. Langston,et al.  Structure under Mount Rainier, Washington, inferred from teleseismic body waves , 1979 .

[41]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[42]  Charles A. Langston,et al.  The effect of planar dipping structure on source and receiver responses for constant ray parameter , 1977 .

[43]  Alan G. Jones,et al.  Anisotropy of Southern African Lithosphere and Asthenosphere , 2009 .

[44]  J. O'neill,et al.  Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies , 2004 .

[45]  Celso Dal Ré Carneiro,et al.  Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida , 2004 .

[46]  D. Campos,et al.  Tectonic evolution of South America , 2000 .

[47]  N. Ussami,et al.  Flexural modeling of the neoproterozoic Araguaia belt, central Brazil , 1999 .

[48]  R. Kind,et al.  The upper-mantle discontinuities underneath the GRF array from P-to-S converted phases , 1988 .

[49]  C. D. Neto,et al.  Sismicidade do Brasil , 1984 .