APPLICATIONS OF OPTICAL CAVITIES IN MODERN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS

Publisher Summary This chapter discusses applications of optical cavities in modern atomic, molecular, and optical physics. For many contemporary physics experiments, the use of an optical cavity has become a powerful tool for enhancement in detection sensitivities, nonlinear interactions, and quantum dynamics. Indeed, an optical cavity allows one to extend the interaction length between matter and field, to build up the optical power, to impose a well-defined mode structure on the electromagnetic field, to enable extreme nonlinear optics, and to study manifestly quantum mechanical behavior associated with the modified vacuum structure and/or the large field associated with a single photon confined to a small volume. Experimental activities that have benefited from the use of optical cavities appear in such diverse areas as ultra-sensitive detection for classical laser spectroscopy, nonlinear optical devices, optical frequency metrology and precision measurement, and cavity quantum electrodynamics (cavity QED). One of the important themes in laser spectroscopy is to utilize an extended interaction length between matter and field inside a high finesse cavity for increased detection sensitivity. Two key ingredients are needed to achieve the highest sensitivity possible in detection of atomic and molecular absorptions: enhancement of the absorption signal and elimination of technical noise. The chapter discusses exploration of quantum dynamics associated with the enhanced interaction between atoms and cavity field; where the structure of the cavity enables a large field amplitude associated with single intracavity photons, the system dynamics can become manifestly quantum and nonlinear.

[1]  Hans P. Jenssen,et al.  Advanced solid-state lasers , 1991 .

[2]  Y. Awaji,et al.  Accurate optical frequency atlas of the 1.5-µm bands of acetylene , 1996 .

[3]  Thompson,et al.  Optical bistability and photon statistics in cavity quantum electrodynamics. , 1991, Physical review letters.

[4]  Jun Ye,et al.  Full observation of single-atom dynamics in cavity QED , 1999 .

[5]  A. Bell,et al.  Optical comb generator as an efficient short-pulse source. , 1996, Optics letters.

[6]  Cooling of a single atom in an optical trap inside a resonator , 2000, quant-ph/0005133.

[7]  L. Lugiato Theory of Optical Bistability , 1982 .

[8]  P. Stokseth,et al.  Tunable Lasers and Applications , 1976 .

[9]  Jun Ye,et al.  Measurement of mirror birefringence at the sub-ppm level: Proposed application to a test of QED , 2000 .

[10]  L. Hollberg,et al.  Cavity-enhanced absorption spectroscopy of molecular oxygen , 1999 .

[11]  Anthony Turner,et al.  Proceedings of the Society of Photo-Optical Instrumentation Engineers , 2004 .

[12]  F. Wise,et al.  Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity. , 1994, Optics letters.

[13]  Tadasi Sueta,et al.  High‐repetition‐rate optical pulse generator using a Fabry‐Perot electro‐optic modulator , 1972 .

[14]  G. Rempe,et al.  Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity , 1999 .

[15]  Rizzo,et al.  Search for nearly massless, weakly coupled particles by optical techniques. , 1993, Physical review. D, Particles and fields.

[16]  Meyer,et al.  Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity. , 1996, Physical review letters.

[17]  W. Knoll,et al.  Propagation and deflection of guided modes in planar waveguides via grating rotation , 1995 .

[18]  W. Schleich,et al.  Localization of an atom by homodyne measurement , 1996 .

[19]  R. Lascola,et al.  Nonlinear laser spectroscopy , 1996 .

[20]  H. Mabuchi,et al.  Real-time detection of individual atoms falling through a high-finesse optical cavity. , 1996, Optics letters.

[21]  Hall,et al.  Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb , 2000, Physical review letters.

[22]  Theodor W. Hänsch,et al.  Absolute optical frequency measurement of the cesium D 2 line , 2000 .

[23]  N. Wong,et al.  Dispersion compensation for terahertz optical frequency comb generation. , 1997, Optics letters.

[24]  J. Diels,et al.  Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. , 2001, Physical review letters.

[25]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[26]  John L. Hall,et al.  Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer , 1993 .

[27]  L. R. Brothers,et al.  Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz. , 1994, Optics letters.

[28]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[29]  M. Scully,et al.  Intracavity electromagnetically induced transparency. , 1998, Optics letters.

[30]  Leo W. Hollberg,et al.  Optical heterodyne saturation spectroscopy , 1981 .

[31]  S. Moriwaki,et al.  Measurement of the residual birefringence of interferential mirrors using Fabry-Perot cavity , 1997 .

[32]  M. Xiao,et al.  Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. , 2001, Physical review letters.

[33]  Y Awaji,et al.  High-frequency-stability laser at 1.5 microm using Doppler-free molecular lines. , 1995, Optics letters.

[34]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[35]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[36]  H. J. Kimble,et al.  Quantum state transfer between motion and light , 1999 .

[37]  Gary C. Bjorklund,et al.  Frequency modulation (FM) spectroscopy , 1983 .

[38]  Takao Fuji,et al.  Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. , 2002, Physical review letters.

[39]  J. L. Hall,et al.  Sub-Doppler optical frequency reference at 1.064 microm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C(2)HD overtone transition. , 1996, Optics letters.

[40]  C. J. Hood,et al.  Real-Time Cavity QED with Single Atoms , 1998 .

[41]  Poppe,et al.  Controlling the phase evolution of few-cycle light pulses , 2000, Physical review letters.

[42]  T. Hänsch,et al.  Hydrogen Atom , 2021, Quantum Mechanics.

[43]  Stephan W Koch,et al.  Nonlinear optics of normal-mode-coupling semiconductor microcavities , 1999 .

[44]  M. Inguscio,et al.  Search for Small Violations of the Symmetrization Postulate for Spin-0 Particles , 1998 .

[45]  M. Salour Quantum interference effects in two-photon spectroscopy , 1978 .

[46]  M. Linne,et al.  Fixed-frequency cavity ringdown diagnostic for atmospheric particulate matter. , 1998, Optics letters.

[47]  P. Meystre,et al.  Observation of absorptive optical bistability in a fabry-perot cavity containing multiple atomic beams , 1981 .

[48]  R. L. Smith,et al.  Practical Solutions of the Lock-In Detection Problem for Lorentz and Dispersion Resonance Signals* , 1971 .

[49]  R. Jason Jones,et al.  Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity , 2000 .

[50]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[51]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers , 1975 .

[52]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[53]  A. Doherty,et al.  Motional states of atoms in cavity QED , 1998 .

[54]  S. Rebic,et al.  Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency , 2002 .

[55]  J. Raimond,et al.  Trapping atoms by the vacuum field in a cavity , 1991 .

[56]  John L. Hall,et al.  Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach , 1976 .

[57]  H. A. Schwettman,et al.  PULSE-STACKED CAVITY RING-DOWN SPECTROSCOPY , 1999 .

[58]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[59]  C. cohen-tannoudji,et al.  Atom-photon interactions , 1992 .

[60]  H. Kimble,et al.  Well-dressed states for wave-packet dynamics in cavity QED , 1997 .

[61]  James S. Harris,et al.  Optical heterodyne detection in cavity ring-down spectroscopy , 1998 .

[62]  Andrew C. R. Pipino,et al.  Ultrasensitive Surface Spectroscopy with a Miniature Optical Resonator , 1999 .

[63]  P. Fritschel High Power Interferometric Phase Measurement Limited by Quantum Noise , 1998 .

[64]  N. Langford,et al.  Cavity-augmented frequency tripling of a continuous wave mode-locked laser , 2001 .

[65]  J. L. Hall,et al.  Highly selective terahertz optical frequency comb generator. , 1997, Optics letters.

[66]  J. Eberly,et al.  Cavity Quantum Electrodynamics , 1996 .

[67]  Stephen L. Adler,et al.  Photon splitting and photon dispersion in a strong magnetic field , 1971 .

[68]  Jun Ye,et al.  Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C 2 H 2 and C 2 HD , 1999 .

[69]  E. Hinds Cavity quantum electrodynamics , 1991, Optical Society of America Annual Meeting.

[70]  L. Stodolsky,et al.  Mixing of the photon with low-mass particles. , 1988, Physical review. D, Particles and fields.

[71]  G. Bjorklund,et al.  Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. , 1980, Optics letters.

[72]  C. J. Hood,et al.  Squeezed excitation in cavity QED: Experiment and theory , 1998 .

[73]  Theodor W. Hänsch,et al.  High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses , 1978 .

[74]  J. J. Scherer,et al.  Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) in low pressure flames , 1997 .

[75]  SCHEME TO PROBE THE DECOHERENCE OF A MACROSCOPIC OBJECT , 1997, quant-ph/9712017.

[76]  Ishibashi,et al.  Near-Infrared Laser Spectrometer with Sub-Doppler Resolution, High Sensitivity, and Wide Tunability: A Case Study in the 1.65-µm Region of CH(3)I Spectrum. , 2000, Journal of molecular spectroscopy.

[77]  Semiclassical theory of cavity-assisted atom cooling , 2000, quant-ph/0010061.

[78]  H. Kimble Calculated enhancement for intracavity spectroscopy with a single-mode laser (A) , 1980 .

[79]  D. Herschbach,et al.  A Mechanical Means to Produce Intense Beams of Slow Molecules , 1999 .

[80]  Richard M. Swanson,et al.  Applied Physics , 1936, Nature.

[81]  M M Murnane,et al.  Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. , 1993, Optics letters.

[82]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1993 .

[83]  L. Orozco,et al.  Intensity correlations in cavity QED , 2000 .

[84]  R. Felder,et al.  He-Ne Lasers Stabilized by Saturated Absorption in Iodine at 612 nm , 1980, IEEE Transactions on Instrumentation and Measurement.

[85]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[86]  W. Lichten Precise wavelength measurements and optical phase shifts. I. General theory , 1985 .

[87]  Fabre,et al.  Precision optical-frequency-difference measurements. , 1988, Physical review. A, General physics.

[88]  G. Rempe,et al.  Feedback on the motion of a single atom in an optical cavity. , 2002, Physical review letters.

[89]  D. Z. Anderson,et al.  Mirror reflectometer based on optical cavity decay time. , 1984, Applied optics.

[90]  T. Hänsch,et al.  Phase-coherent light pulses for atom optics and interferometry. , 1997, Optics letters.

[91]  C. E. Wieman,et al.  Measurement of Parity Nonconservation and an Anapole Moment in Cesium , 1997, Science.

[92]  G. Zavattini,et al.  Measurement of the phase anisotropy of very high reflectivity interferential mirrors , 1997 .

[93]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[94]  H. Carmichael,et al.  Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED. , 2000, Physical review letters.

[95]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[96]  S. Vyatchanin,et al.  Low quantum noise tranquilizer for Fabry-Perot interferometer , 2002 .

[97]  J. L. Hall,et al.  Broadband optical frequency comb generation with a phase-modulated parametric oscillator. , 1999, Optics letters.

[98]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[99]  Colin P. Williams Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.

[100]  David J. Jones,et al.  Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. , 2003, Optics letters.

[101]  John L. Hall,et al.  Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection , 1985 .

[102]  Theodor W. Hänsch,et al.  Doppler-Free Laser Polarization Spectroscopy , 1976 .

[103]  Retroactive Quantum Jumps in a Strongly Coupled Atom-Field System , 1998, quant-ph/9807018.

[104]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[105]  J. J. Meulen,et al.  Relative predissociation rates of OH (A 2Σ+,v′=3) from combined cavity ring down—Laser-induced fluorescence measurements , 1997 .

[106]  D Leibfried,et al.  Coupling a single atomic quantum bit to a high finesse optical cavity. , 2002, Physical review letters.

[107]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[108]  Hugo D. Wahlquist,et al.  Modulation Broadening of Unsaturated Lorentzian Lines , 1961 .

[109]  Jun Ye,et al.  Absolute frequency atlas of molecular I2 lines at 532 nm , 1999, IEEE Trans. Instrum. Meas..

[110]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale , 1996 .

[111]  J. Kahn,et al.  Optical frequency comb generator using phase modulation in amplified circulating loop , 1993, IEEE Photonics Technology Letters.

[112]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[113]  C. Bordé,et al.  Ultrahigh-resolution saturation spectroscopy using slow molecules in an external cell , 1994 .

[114]  Feng-Lei Hong,et al.  Stabilization and frequency measurement of the I2-stabilized Nd: YAG laser , 1998, IEEE Trans. Instrum. Meas..

[115]  Jun Ye,et al.  Femtosecond pulse amplification by coherent addition in a passive optical cavity. , 2002, Optics letters.

[116]  Jun Ye,et al.  Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity , 2001, quant-ph/0101103.

[117]  P. Maunz,et al.  Trapping an atom with single photons , 2000, Nature.

[118]  Jun Ye,et al.  Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power , 2000 .

[119]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[120]  Richard J. Saykally,et al.  Cavity ringdown measures trace concentrations , 1997 .

[121]  John L. Hall,et al.  Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts , 1976 .

[122]  Dieter Meschede,et al.  Deterministic Delivery of a Single Atom , 2001, Science.

[123]  Dan F. Walls,et al.  MOTION OF A TWO-LEVEL ATOM IN AN OPTICAL CAVITY , 1997 .

[124]  M. Xiao,et al.  Cavity-linewidth narrowing by means of electromagnetically induced transparency. , 2000, Optics letters.

[125]  C. Olopade,et al.  Exhaled pentane levels in acute asthma. , 1997, Chest.

[126]  Shaoul Ezekiel,et al.  Nonlinear Laser Spectroscopy , 1977 .

[127]  J. Eckstein,et al.  Coherent Two-Photon Excitation by Multiple Light Pulses , 1977 .

[128]  J. Doyle,et al.  Chemical physics: Molecules are cool , 1999, Nature.

[129]  M. Vallet,et al.  Cotton–Mouton effect measurement with the Fabry–Perot eigenstates , 1998 .

[130]  S. Stenholm,et al.  Atomic beam deflection in a quantum field , 1989, Annual Meeting Optical Society of America.

[131]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[132]  Theodor W. Hänsch,et al.  Ultrasensitive response of a CW dye laser to selective extinction , 1972 .

[133]  École d'été de physique théorique,et al.  Systèmes fondamentaux en optique quantique : Les Houches, session LIII, 25 Juin - 27 Juilet 1990 = Fundamental systems in quantum optics , 1992 .

[134]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[135]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[136]  Spontaneous emission in a standing-wave cavity: Quantum-mechanical center-of-mass motion. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[137]  STANDARD QUANTUM LIMITS FOR BROADBAND POSITION MEASUREMENT , 1998, quant-ph/9801039.

[138]  Trapping of single atoms with single photons in cavity QED , 2000, quant-ph/0006015.

[139]  M Ohtsu,et al.  Ultranarrow (13)C(2)H(2) saturated-absorption lines at 1.5 microm. , 1994, Optics letters.

[140]  H. Mabuchi,et al.  Quantum trajectories for realistic detection , 2002 .

[141]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[142]  John L. Hall,et al.  Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards , 1990 .

[143]  M. Kozuma,et al.  Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity. , 2002, Physical review letters.

[144]  Hans-J. Briegel,et al.  Physical Implementations for Quantum Communication in Quantum Networks , 1998, QCQC.

[145]  Young,et al.  Sub-dekahertz ultraviolet spectroscopy of 199Hg+ , 2000, Physical review letters.

[146]  Michael S. Feld,et al.  The Single-Atom Laser , 1998 .

[147]  Jun Ye,et al.  Continuously tunable, precise, single frequency optical signal generator. , 2002, Optics express.

[148]  H. J. Kimble,et al.  Trapping of Single Atoms in Cavity QED , 1999 .

[149]  S. Bramwell,et al.  Doppler-free two-photon absorption spectroscopy with a frequency-modulated dye laser. , 1987, Optics letters.

[150]  Journal of Chemical Physics , 1932, Nature.

[151]  V. Chebotayev,et al.  Narrow resonances of two-photon absorption of super-narrow pulses in a gas , 1977 .

[152]  E. Arimondo Coherent Population Trapping in Laser Spectroscopy , 1996 .

[153]  D. Bhusari,et al.  Kinetics of C6H5 Radical Reactions with Toluene and Xylenes by Cavity Ringdown Spectrometry , 1999 .

[154]  V. Braginsky,et al.  The analysis of table-top quantum measurement with macroscopic masses , 2001 .

[155]  G. Berden,et al.  Electrostatic trapping of ammonia molecules , 2000, Nature.

[156]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[157]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[158]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[159]  L. Orozco,et al.  Nonclassical Intensity Correlations in Cavity QED , 1998 .

[160]  P Cancio,et al.  Search for exchange-antisymmetric states for spin-0 particles at the 10(-11) level. , 2001, Physical review letters.

[161]  P. Werle Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers , 1995 .

[162]  Vladimir S. Ilchenko,et al.  CAVITY QED WITH HIGH-Q WHISPERING GALLERY MODES , 1998 .

[163]  W. Lichten Precise wavelength measurements and optical phase shifts II. Applications , 1986 .

[164]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[165]  A. Miziolek,et al.  Ultrasensitive Laser Spectroscopy , 1985 .

[166]  Richard G. Brewer,et al.  Laser-frequency division and stabilization , 1984 .

[167]  Motoichi Ohtsu,et al.  Wide-span optical frequency comb generator for accurate optical frequency difference measurement , 1993 .

[168]  Clifford R. Pollock,et al.  Advanced Solid-state Lasers , 1996 .

[169]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[170]  Hood,et al.  The atom-cavity microscope: single atoms bound in orbit by single photons , 2000, Science.

[171]  J Reichert,et al.  Accurate measurement of large optical frequency differences with a mode-locked laser. , 1999, Optics letters.

[172]  G. Malcolm,et al.  Efficient frequency conversion of mode-locked diode-pumped lasers and tunable all-solid-state laser sources , 1992 .

[173]  Chu,et al.  Laser cooling of atoms, ions, or molecules by coherent scattering , 2000, Physical review letters.

[174]  Rizzo,et al.  Limits on the production of light scalar and pseudoscalar particles. , 1990, Physical review letters.

[175]  Jun Ye,et al.  High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers , 2000 .

[176]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[177]  John L. Hall,et al.  Laser stabilization at the millihertz level , 1988 .

[178]  E. Milotti,et al.  Experimental method to detect the magnetic birefringence of vacuum , 1998 .

[179]  M. Scully,et al.  Reflecting Slow Atoms from a Micromaser Field , 1991 .

[180]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena , 1996 .

[181]  Kazuhiro Imai,et al.  30-THz span optical frequency comb generation by self-phase modulation in an optical fiber , 1998 .

[182]  M S Feld,et al.  Cavity ring-down technique and its application to the measurement of ultraslow velocities. , 1995, Optics letters.

[183]  Terry A. Miller,et al.  DETECTION AND CHARACTERIZATION OF ALKYL PEROXY RADICALS USING CAVITY RINGDOWN SPECTROSCOPY , 2000 .

[184]  D. W. Allan,et al.  Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[185]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[186]  H. Black,et al.  Expired breath hydrogen peroxide is a marker of acute airway inflammation in pediatric patients with asthma. , 1993, The American review of respiratory disease.