The use of frontier techniques to identify efficient solutions for the Berth Allocation Problem solved with a hybrid evolutionary algorithm

Abstract The search for logistics best-practices in international trade has led to the appearance of the Berth Allocation Problem. If the vessels have release dates, the problem is proved to be NP-hard and the performance of exact algorithms is not satisfactory, leading to the use of metaheuristics. This paper develops a Hybrid Evolutionary Algorithm for the discrete and dynamic Berth Allocation Problem. A challenge of using Genetic Algorithms is the identification of the best approach to model a specific problem. This paper proposes the use of frontier techniques (Data Envelopment Analysis and Free Disposal Hull models) to compare the performances of alternative specifications of the parameters for the algorithm proposed and to identify efficient solutions.

[1]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[2]  Lawrence M. Seiford,et al.  Modeling undesirable factors in efficiency evaluation , 2002, Eur. J. Oper. Res..

[3]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[4]  Michel Bierlaire,et al.  Real-time management of berth allocation with stochastic arrival and handling times , 2017, J. Sched..

[5]  Dario Pacino,et al.  Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem , 2017 .

[6]  Sabyasachee Mishra,et al.  A collaborative agreement for berth allocation under excessive demand , 2018, Eng. Appl. Artif. Intell..

[7]  Manoj Kumar Tiwari,et al.  Decision Support System for Discrete Robust Berth Allocation , 2015, IFAC-PapersOnLine.

[8]  Christian Bierwirth,et al.  A follow-up survey of berth allocation and quay crane scheduling problems in container terminals , 2015, Eur. J. Oper. Res..

[9]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[10]  Akio Imai,et al.  The Dynamic Berth Allocation Problem for a Container Port , 2001 .

[11]  Gilbert Laporte,et al.  Models and Tabu Search Heuristics for the Berth-Allocation Problem , 2005, Transp. Sci..

[12]  Tian Yu,et al.  A genetic algorithm based on spatiotemporal conflict between continuous berth-allocation and time-varying specific crane assignment , 2019 .

[13]  Jesper Larsen,et al.  Models for the discrete berth allocation problem: A computational comparison , 2011 .

[14]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[15]  Agostinho Agra,et al.  MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem , 2018, Eur. J. Oper. Res..

[16]  Christos A. Kontovas,et al.  The multi-port berth allocation problem with speed optimization and emission considerations , 2017 .

[17]  Yuping Wang,et al.  A new hybrid genetic algorithm for job shop scheduling problem , 2012, Comput. Oper. Res..

[18]  Lixin Miao,et al.  Simultaneous Allocation of Berths and Quay Cranes under Discrete Berth Situation , 2018, Asia Pac. J. Oper. Res..

[19]  Kay Chen Tan,et al.  A Multi-Objective Multi-Colony Ant Algorithm for Solving the Berth Allocation Problem , 2008, Advances of Computational Intelligence in Industrial Systems.

[20]  Chia-Hui Lin,et al.  Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems , 2017, Comput. Oper. Res..

[21]  Michel Bierlaire,et al.  Exact and heuristic methods to solve the berth allocation problem in bulk ports , 2013 .

[22]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[23]  Halit Üster,et al.  A scatter search-based heuristic to locate capacitated transshipment points , 2007, Comput. Oper. Res..

[24]  Chung-Lun Li,et al.  Berth allocation with time-dependent physical limitations on vessels , 2012, Eur. J. Oper. Res..

[25]  Wei-Chiang Hong,et al.  Berth and quay crane coordinated scheduling using multi-objective chaos cloud particle swarm optimization algorithm , 2017, Neural Computing and Applications.

[26]  Christian Bierwirth,et al.  A survey of berth allocation and quay crane scheduling problems in container terminals , 2010, Eur. J. Oper. Res..

[27]  Yu-Hsin Liu A hybrid scatter search for the probabilistic traveling salesman problem , 2007, Comput. Oper. Res..

[28]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[29]  Belén Melián-Batista,et al.  Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem , 2012, Eng. Appl. Artif. Intell..

[30]  Maxim A. Dulebenets,et al.  Application of Evolutionary Computation for Berth Scheduling at Marine Container Terminals: Parameter Tuning Versus Parameter Control , 2018, IEEE Transactions on Intelligent Transportation Systems.

[31]  Yongpei Guan,et al.  The berth allocation problem: models and solution methods , 2004 .

[32]  Richard Y. K. Fung,et al.  Berth allocation considering fuel consumption and vessel emissions , 2011 .

[33]  Mihalis M. Golias,et al.  Berth scheduling by customer service differentiation: A multi-objective approach , 2009 .

[34]  Dominique Deprins,et al.  Measuring Labor-Efficiency in Post Offices , 2006 .

[35]  Stefan Voß,et al.  POPMUSIC as a matheuristic for the berth allocation problem , 2014, Annals of Mathematics and Artificial Intelligence.

[36]  Luiz Antonio Nogueira Lorena,et al.  Clustering Search for the Berth Allocation Problem , 2012, Expert Syst. Appl..

[37]  Glaydston Mattos Ribeiro,et al.  An adaptive large neighborhood search for the discrete and continuous Berth allocation problem , 2016, Comput. Oper. Res..

[38]  Chung-Cheng Lu,et al.  Data envelopment analysis for evaluating the efficiency of genetic algorithms on solving the vehicle routing problem with soft time windows , 2012, Comput. Ind. Eng..

[39]  Bert De Reyck,et al.  A hybrid scatter search/electromagnetism meta-heuristic for project scheduling , 2006, Eur. J. Oper. Res..

[40]  Akio Imai,et al.  BERTH ALLOCATION IN A CONTAINER PORT: USING A CONTINUOUS LOCATION SPACE APPROACH , 2005 .

[41]  Loo Hay Lee,et al.  Daily berth planning in a tidal port with channel flow control , 2017 .

[42]  Feng Chu,et al.  Mathematical Model and Solution Approach for Berth Allocation Problem in Tidal Bulk Ports with Different Vessel Draft Requirements , 2018, 2018 15th International Conference on Service Systems and Service Management (ICSSSM).

[43]  Andreas T. Ernst,et al.  Mathematical models for the berth allocation problem in dry bulk terminals , 2017, J. Sched..

[44]  Ching-Jung Ting,et al.  Particle swarm optimization algorithm for the berth allocation problem , 2014, Expert Syst. Appl..

[45]  Maria Flavia Monaco,et al.  The Berth Allocation Problem: A Strong Formulation Solved by a Lagrangean Approach , 2007, Transp. Sci..

[46]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[47]  S. R. Seyedalizadeh Ganji,et al.  Analysis of the continuous berth allocation problem in container ports using a genetic algorithm , 2010 .

[48]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[49]  Greet Vanden Berghe,et al.  The berth allocation problem in terminals with irregular layouts , 2019, Eur. J. Oper. Res..

[50]  Changchun Liu,et al.  Reactive strategy for discrete berth allocation and quay crane assignment problems under uncertainty , 2018, Comput. Ind. Eng..

[51]  Yusin Lee,et al.  An optimization heuristic for the berth scheduling problem , 2009, Eur. J. Oper. Res..