Low-Dimensional Manifold Distributional Semantic Models

Motivated by evidence in psycholinguistics and cognition, we propose a hierarchical distributed semantic model (DSM) that consists of low-dimensional manifolds built on semantic neighborhoods. Each semantic neighborhood is sparsely encoded and mapped into a low-dimensional space. Global operations are decomposed into local operations in multiple sub-spaces; results from these local operations are fused to come up with semantic relatedness estimates. Manifold DSM are constructed starting from a pairwise word-level semantic similarity matrix. The proposed model is evaluated on semantic similarity estimation task significantly improving on the state-of-the-art.

[1]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[2]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[3]  Jason Weston,et al.  Deep learning via semi-supervised embedding , 2008, ICML '08.

[4]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[5]  Graeme Hirst,et al.  Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures , 2004 .

[6]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[7]  Kenji Kita,et al.  Dimensionality reduction using non-negative matrix factorization for information retrieval , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[8]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Catherine Faron-Zucker,et al.  Searching the semantic Web: approximate query processing based on ontologies , 2006, IEEE Intelligent Systems.

[10]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[11]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[12]  Alessandro Lenci,et al.  Distributional Memory: A General Framework for Corpus-Based Semantics , 2010, CL.

[13]  Shrikanth S. Narayanan,et al.  Kernel Models for Affective Lexicon Creation , 2011, INTERSPEECH.

[14]  Jean Véronis,et al.  HyperLex: lexical cartography for information retrieval , 2004, Comput. Speech Lang..

[15]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[16]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[17]  Kenneth Ward Church,et al.  Very sparse random projections , 2006, KDD '06.

[18]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[19]  Simone Paolo Ponzetto,et al.  WikiRelate! Computing Semantic Relatedness Using Wikipedia , 2006, AAAI.

[20]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[21]  E. Aronson,et al.  Theory and method , 1985 .

[22]  Magnus Sahlgren,et al.  Filaments of Meaning in Word Space , 2008, ECIR.

[23]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[24]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Y. Takane,et al.  Multidimensional Scaling I , 2015 .

[26]  Danushka Bollegala,et al.  Measuring semantic similarity between words using web search engines , 2007, WWW '07.

[27]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[28]  Eneko Agirre,et al.  A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches , 2009, NAACL.

[29]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[30]  Jianzhong Wang Maximum Variance Unfolding , 2012 .

[31]  Alexandros Potamianos,et al.  Unsupervised Semantic Similarity Computation between Terms Using Web Documents , 2010, IEEE Transactions on Knowledge and Data Engineering.

[32]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[33]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[34]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[35]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[36]  Alexandros Potamianos,et al.  Similarity computation using semantic networks created from web-harvested data , 2013, Natural Language Engineering.

[37]  Roger K. Moore Computer Speech and Language , 1986 .

[38]  Eduardo Mena,et al.  Querying the web: a multiontology disambiguation method , 2006, ICWE '06.

[39]  Gregory Grefenstette,et al.  Explorations in automatic thesaurus discovery , 1994 .