Diffusion Tensor Imaging with Deterministic Error Bounds

Errors in the data and the forward operator of an inverse problem can be handily modelled using partial order in Banach lattices. We present some existing results of the theory of regularisation in this novel framework, where errors are represented as bounds by means of the appropriate partial order. We apply the theory to diffusion tensor imaging, where correct noise modelling is challenging: it involves the Rician distribution and the non-linear Stejskal–Tanner equation. Linearisation of the latter in the statistical framework would complicate the noise model even further. We avoid this using the error bounds approach, which preserves simple error structure under monotone transformations.

[1]  M. Burger,et al.  Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators , 2014, 1402.5297.

[2]  Bernhard Burgeth,et al.  Variational Methods for Denoising Matrix Fields , 2009 .

[3]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[4]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[5]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[6]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[7]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[8]  K. Bredies Symmetric tensor fields of bounded deformation , 2013 .

[9]  K. Kunisch,et al.  Properties of L1-TGV2: The one-dimensional case , 2013 .

[10]  T. Hohage,et al.  A Generalization of the Chambolle-Pock Algorithm to Banach Spaces with Applications to Inverse Problems , 2014, 1412.0126.

[11]  J. Cooper Riesz spaces , 2012 .

[12]  A. G. Yagola,et al.  On inverse problems in partially ordered spaces with a priori information , 2012 .

[13]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  Patrick Guidotti,et al.  Anisotropic diffusions of image processing from Perona–Malik on , 2015 .

[16]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[17]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[18]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[19]  K. Bredies,et al.  Total generalised variation in diffusion tensor imaging , 2012 .

[20]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[21]  Rachid Deriche,et al.  Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization , 2002, ECCV.

[22]  Maxim Zaitsev,et al.  Prospective motion correction with continuous gradient updates in diffusion weighted imaging , 2012, Magnetic resonance in medicine.

[23]  Otmar Scherzer,et al.  The residual method for regularizing ill-posed problems , 2009, Appl. Math. Comput..

[24]  K. Bredies,et al.  Parallel imaging with nonlinear reconstruction using variational penalties , 2012, Magnetic resonance in medicine.

[25]  F. Smithies Linear Operators , 2019, Nature.

[26]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[27]  Pascal Getreuer,et al.  A Variational Model for the Restoration of MR Images Corrupted by Blur and Rician Noise , 2011, ISVC.

[28]  Emanuele Schiavi,et al.  Automatic Total Generalized Variation-Based DTI Rician Denoising , 2013, ICIAR.

[29]  Andrea Fuster,et al.  Adjugate Diffusion Tensors for Geodesic Tractography in White Matter , 2015, Journal of Mathematical Imaging and Vision.

[30]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[31]  Andrea Fuster,et al.  A Novel Riemannian Metric for Geodesic Tractography in DTI , 2013, CDMRI/MMBC@MICCAI.

[32]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[33]  P. G. Kevrekidis,et al.  The One-Dimensional Case , 2009 .

[34]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[35]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[36]  Carola-Bibiane Schönlieb,et al.  Phase reconstruction from velocity-encoded MRI measurements--a survey of sparsity-promoting variational approaches. , 2014, Journal of magnetic resonance.

[37]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[38]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[39]  K. Kunisch,et al.  Properties of L 1-TGV 2 : The one-dimensional case , 2011 .

[40]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[41]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[42]  M. Vannier,et al.  Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? , 2009, Inverse problems.

[43]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[44]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[45]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[46]  Joachim Hornegger,et al.  Real‐time optical motion correction for diffusion tensor imaging , 2011, Magnetic resonance in medicine.

[47]  T. O’Neil Geometric Measure Theory , 2002 .

[48]  Hans Hagen,et al.  Visualization and Processing of Tensor Fields , 2014 .

[49]  Manfred Liebmann,et al.  GPU-accelererated regularisation of large diffusion-tensor volumes , 2013, Computing.

[50]  Yury Korolev,et al.  Making use of a partial order in solving inverse problems: II. , 2013 .

[51]  Daniel K Sodickson,et al.  A model‐based reconstruction for undersampled radial spin‐echo DTI with variational penalties on the diffusion tensor , 2015, NMR in biomedicine.

[52]  M. Kendall Theoretical Statistics , 1956, Nature.

[53]  P. Kingsley,et al.  Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors , 2006 .

[54]  Ross T. Whitaker,et al.  Adaptive Riemannian Metrics for Improved Geodesic Tracking of White Matter , 2011, IPMI.

[55]  Tuomo Valkonen,et al.  A primal–dual hybrid gradient method for nonlinear operators with applications to MRI , 2013, 1309.5032.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[58]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[59]  Jacques-Donald Tournier,et al.  Diffusion tensor imaging and beyond , 2011, Magnetic resonance in medicine.

[60]  Carola-Bibiane Schönlieb,et al.  Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models , 2015, Journal of Mathematical Imaging and Vision.

[61]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[62]  Kristian Bredies,et al.  TGV for diffusion tensors: A comparison of fidelity functions , 2013 .

[63]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[64]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[65]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .