Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids

We present a computational method of coupling average interpolating wavelets with high-order finite volume schemes and its implementation on heterogeneous computer architectures for the simulation of multiphase compressible flows. The method is implemented to take advantage of the parallel computing capabilities of emerging heterogeneous multicore/multi-GPU architectures. A highly efficient parallel implementation is achieved by introducing the concept of wavelet blocks, exploiting the task-based parallelism for CPU cores, and by managing asynchronously an array of GPUs by means of OpenCL. We investigate the comparative accuracy of the GPU and CPU based simulations and analyze their discrepancy for two-dimensional simulations of shock-bubble interaction and Richtmeyer-Meshkov instability. The results indicate that the accuracy of the GPU/CPU heterogeneous solver is competitive with the one that uses exclusively the CPU cores. We report the performance improvements by employing up to 12 cores and 6 GPUs compared to the single-core execution. For the simulation of the shock-bubble interaction at Mach 3 with two million grid points, we observe a 100-fold speedup for the heterogeneous part and an overall speedup of 34.

[1]  Kai Schneider,et al.  Space--time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations , 2009 .

[2]  Phillip Colella,et al.  Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems , 2007, J. Comput. Phys..

[3]  Oleg V. Vasilyev,et al.  An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers , 2005, SIAM J. Sci. Comput..

[4]  O. Vasilyev,et al.  Wavelet Methods in Computational Fluid Dynamics , 2010 .

[5]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[6]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[7]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[8]  Jack J. Dongarra,et al.  A Portable Programming Interface for Performance Evaluation on Modern Processors , 2000, Int. J. High Perform. Comput. Appl..

[9]  Oleg V. Vasilyev,et al.  Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations , 2006, J. Comput. Phys..

[10]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[11]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[12]  Samuel Williams,et al.  Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.

[13]  Dimitris Drikakis,et al.  Mach number effects on shock-bubble interaction , 2001 .

[14]  Jacques Liandrat,et al.  Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation , 1990 .

[15]  Diego Rossinelli,et al.  GPU accelerated simulations of bluff body flows using vortex particle methods , 2010, J. Comput. Phys..

[16]  David A. Bader,et al.  Computing discrete transforms on the Cell Broadband Engine , 2009, Parallel Comput..

[17]  Michael Bergdorf,et al.  A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..

[18]  John W. Grove,et al.  Applications of front tracking to the simulation of shock refractions and unstable mixing , 1994 .

[19]  W. Wulff COMPUTATIONAL METHODS FOR MULTIPHASE FLOW , 1990 .

[20]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[21]  Y. Kaneda,et al.  Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation , 2009 .

[22]  Thomas Ertl,et al.  Hardware Accelerated Wavelet Transformations , 2000, VisSym.

[23]  David H. Sharp,et al.  Numerical investigation of Richtmyer–Meshkov instability using front tracking , 1995, Journal of Fluid Mechanics.

[24]  M. Brouillette THE RICHTMYER-MESHKOV INSTABILITY , 2002 .

[25]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[26]  Jostein R. Natvig,et al.  Solving the Euler Equations on Graphics Processing Units , 2006, International Conference on Computational Science.

[27]  Eric Darve,et al.  Large calculation of the flow over a hypersonic vehicle using a GPU , 2008, J. Comput. Phys..

[28]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[29]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[30]  Aaftab Munshi,et al.  The OpenCL specification , 2009, 2009 IEEE Hot Chips 21 Symposium (HCS).

[31]  P. Glaskowsky NVIDIA ’ s Fermi : The First Complete GPU Computing Architecture , 2009 .

[32]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[33]  Diego Rossinelli,et al.  High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions , 2010, J. Comput. Phys..

[34]  Francisco Tirado,et al.  Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting , 2008, IEEE Transactions on Parallel and Distributed Systems.

[35]  Graham Pullan,et al.  Acceleration of a 3D Euler solver using commodity graphics hardware , 2008 .

[36]  Carlos Eduardo Scheidegger,et al.  Practical CFD Simulations on Programmable Graphics Hardware using SMAC † , 2005, Comput. Graph. Forum.

[37]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[38]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[39]  Massimo Bernaschi,et al.  Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Diego Rossinelli,et al.  Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems , 2009, Euro-Par.

[41]  Kai Schneider,et al.  An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..

[42]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[43]  D. Donoho Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .

[44]  S. SIAMJ.,et al.  A SIMPLE METHOD FOR COMPRESSIBLE MULTIFLUID FLOWS , 1999 .

[45]  Oleg V. Vasilyev,et al.  A Brinkman penalization method for compressible flows in complex geometries , 2007, J. Comput. Phys..

[46]  Kyriakos C. Giannakoglou,et al.  CFD-based analysis and two-level aerodynamic optimization on Graphics Processing Units , 2010 .