COMPUTATIONS IN FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC

This article is a report on research in progress into the structure of finite diagrams of intuitionistic propositional logic with the aid of automated reasoning systems for larger calculations. A fragment of a propositional logic is the set of formulae built up from a finite number of propositional variables by means of a number of connectives of the logic, among which possibly non-standard ones like or H which are studied here. The diagram of that fragment is the set of equivalence classes of its formulae partially ordered by the derivability relation. N.G. de Bruijn's concept of exact model has been used to construct subdiagrams of the 1980 Mathematical Subject Classification: 03B04, 03B20, 68T15 1982 Computer Reviews Classification System: F.4.1 (Mechanical Theorem Proving)

[1]  G. R. Renardel de Lavalette,et al.  Interpolation in natural fragments of intuitionistic propositional logic , 1986 .

[2]  P. Rodenburg,et al.  Specification of the Fast Fourier Transform algorithm as a term rewriting system , 1987 .

[3]  H. B. M. Jonkers,et al.  A semantic framework for the COLD-family of languages , 1986 .

[4]  J. N. Crossley,et al.  Formal Systems and Recursive Functions , 1963 .

[5]  J. C. Mulder,et al.  A modular approach to protocol verification using process algebra , 1986 .

[6]  Frans Voorbraak,et al.  A Simplification of the Completeness Proofs for Guaspari and Solovay's R , 1986, Notre Dame J. Formal Log..

[7]  Frans Voorbraak,et al.  A Computationally Efficient Approximation of Dempster-Shafer Theory , 1988, Int. J. Man Mach. Stud..

[8]  J. Vrancken,et al.  Parallel object-oriented term rewriting : the booleans , 1988 .

[9]  de Ng Dick Bruijn,et al.  An algol program for deciding derivability in minimal propositional calculus with implication and conjunction over a three letter alphabet , 1975 .

[10]  De Jongh,et al.  Investigations on the intuitionistic propositional calculus , 1968 .

[11]  Albert Visser,et al.  Peano's Smart Children: A Provability Logical Study of Systems with Built-in Consistency , 1986, Notre Dame J. Formal Log..

[12]  F.-J. de Vries,et al.  A functional program for Gaussian Elimination , 1987 .

[13]  Gerard R. Renardel de Lavalette,et al.  Interpolation in fragments of intuitionistic propositional logic , 1987, Journal of Symbolic Logic.

[14]  Erik C. W. Krabbe Naess's Dichotomy of Tenability and Relevance , 1986 .

[15]  Fer-Jan de Vries A functional program for the fast Fourier transform , 1988, ACM SIGPLAN Notices.

[16]  Craig Smorynski,et al.  Arithmetic analogues of McAloon's unique Rosser sentences , 1989, Archive for Mathematical Logic.

[17]  Frans Voorbraak,et al.  The logic of actual obligation. An alternative approach to deontic logic , 1989 .

[18]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[19]  J. A. Bergstra,et al.  Module algebra for relational specifications , 1986 .

[20]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[21]  de Ng Dick Bruijn,et al.  Exact finite models for minimal propositional calculus over a finite alphabet , 1975 .

[22]  D. D. Jongh,et al.  A Class of Intuitionistic Connectives , 1980 .

[23]  G. R. D. Lavalette,et al.  The interpolation theorem in fragments of logics , 1981 .

[24]  P. H. Rodenburg,et al.  Manufacturing a cartesian closed category with exactly two objects out of a C-monoid , 1989, Stud Logica.

[25]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[26]  D. D. Jongh,et al.  A Characterization of the Intuitionistic Propositional Calculus , 1970 .