A review of approaches to uncertainty assessment in energy system optimization models

Abstract Energy system optimization models (ESOMs) have been used extensively in providing insights to decision makers on issues related to climate and energy policy. However, there is a concern that the uncertainties inherent in the model structures and input parameters are at best underplayed and at worst ignored. Compared to other types of energy models, ESOMs tend to use scenarios to handle uncertainties or treat them as a marginal issue. Without adequately addressing uncertainties, the model insights may be limited, lack robustness, and may mislead decision makers. This paper provides an in-depth review of systematic techniques that address uncertainties for ESOMs. We have identified four prevailing uncertainty approaches that have been applied to ESOM type models: Monte Carlo analysis, stochastic programming, robust optimization, and modelling to generate alternatives. For each method, we review the principles, techniques, and how they are utilized to improve the robustness of the model results to provide extra policy insights. In the end, we provide a critical appraisal on the use of these methods.

[1]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[2]  A. Tomasgard,et al.  Short-term uncertainty in long-term energy system models — A case study of wind power in Denmark , 2015 .

[3]  Adam Hawkes,et al.  Energy systems modeling for twenty-first century energy challenges , 2014 .

[4]  Emanuele Borgonovo,et al.  Sensitivity to energy technology costs: a multi-model comparison analysis. , 2015 .

[5]  Semida Silveira,et al.  OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development , 2011 .

[6]  Aqeel Ahmed Bazmi,et al.  Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review , 2011 .

[7]  Rebecca S. Dodder,et al.  Strategic responses to CO2 emission reduction targets drive shift in U.S. electric sector water use , 2014 .

[8]  Will Usher,et al.  An expert elicitation of climate, energy and economic uncertainties , 2013 .

[9]  Céline Guivarch,et al.  Scenario techniques for energy and environmental research: An overview of recent developments to broaden the capacity to deal with complexity and uncertainty , 2017, Environ. Model. Softw..

[10]  Bob van der Zwaan,et al.  The Impact of Uncertainty in Climate Targets and CO2 Storage Availability on Long-Term Emissions Abatement , 2012, Environmental Modeling & Assessment.

[11]  Monika Culka,et al.  Applying Bayesian model averaging for uncertainty estimation of input data in energy modelling , 2014 .

[12]  Alireza Soroudi,et al.  Decision making under uncertainty in energy systems: state of the art , 2013, ArXiv.

[13]  M. G. Morgan Use (and abuse) of expert elicitation in support of decision making for public policy , 2014, Proceedings of the National Academy of Sciences.

[14]  R. Wets,et al.  Stochastic programming , 1989 .

[15]  Joseph F. DeCarolis,et al.  Using modeling to generate alternatives (MGA) to expand our thinking on energy futures , 2011 .

[16]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[17]  Neil Strachan,et al.  An integrated systematic analysis of uncertainties in UK energy transition pathways , 2015 .

[18]  John P. Weyant,et al.  Approaches for performing uncertainty analysis in large-scale energy/economic policy models , 2000 .

[19]  J. Schmee Applied Statistics—A Handbook of Techniques , 1984 .

[20]  Steve Pye,et al.  Uncertainty, politics, and technology: Expert perceptions on energy transitions in the United Kingdom , 2018 .

[21]  Y. Ben-Haim Information-gap decision theory : decisions under severe uncertainty , 2001 .

[22]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[23]  Kenichi Wada,et al.  Technological Forecasting & Social Change Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals , 2014 .

[24]  A. Hainoun,et al.  Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model , 2010 .

[25]  John P. Weyant,et al.  Electric sector investments under technological and policy-related uncertainties: a stochastic programming approach , 2013, Climatic Change.

[26]  Céline Guivarch,et al.  Innovative techniques for quantitative scenarios in energy and environmental research: a review , 2014 .

[27]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[28]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[29]  Kazem Zare,et al.  Risk-based framework for supplying electricity from renewable generation-owning retailers to price-sensitive customers using information gap decision theory , 2017 .

[30]  Amit Kanudia,et al.  Minimax regret strategies for greenhouse gas abatement: methodology and application , 1997, Oper. Res. Lett..

[31]  O Anthony,et al.  Probabilistic uncertainty speci cation : Overview , elaboration techniques and their application to a mechanistic model of carbon ux , 2011 .

[32]  Neil Strachan,et al.  Reinvigorating the scenario technique to expand uncertainty consideration , 2016, Climatic Change.

[33]  Denis Lavigne,et al.  Modelling the impacts of challenging 2020 non-ETS GHG emissions reduction targets on Ireland′s energy system , 2013 .

[34]  Christopher Nichols,et al.  Multi-regional evaluation of the U.S. electricity sector under technology and policy uncertainties: Findings from MARKAL EPA9rUS modeling , 2013 .

[35]  J. P. Deane,et al.  Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system , 2013 .

[36]  Jerry D. Murphy,et al.  Impact of including land-use change emissions from biofuels on meeting GHG emissions reduction targets: the example of Ireland , 2016, Clean Technologies and Environmental Policy.

[37]  Amit Kanudia,et al.  Robust responses to climate change via stochastic MARKAL: The case of Québec , 1996, Eur. J. Oper. Res..

[38]  Barbara Kitchenham,et al.  Procedures for Performing Systematic Reviews , 2004 .

[39]  Monica Dutta,et al.  An Outlook Into Energy Consumption in Large Scale Industries in India: The Cases of Steel, Aluminium and Cement , 2010 .

[40]  B. Li,et al.  Modelling to generate alternatives with an energy system optimization model , 2016, Environ. Model. Softw..

[41]  Amit Kanudia,et al.  Modelling of uncertainties and price elastic demands in energy-environment planning for India , 1996 .

[42]  Sonia Yeh,et al.  Formalizing best practice for energy system optimization modelling , 2017 .

[43]  Harold A. Linstone,et al.  Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis: R.J. Lempert, S.W. Popper, and S.C. Bankes, Santa Monica, CA, The RAND Corporation, 2003 , 2004 .

[44]  Martin Börjesson,et al.  Biofuel futures in road transport – A modeling analysis for Sweden , 2014 .

[45]  Tom Kober,et al.  Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets , 2016 .

[46]  Heiner Müller-Merbach The energy supply model MESSAGE: IIASA, Laxenburg, 1981, v + 34 pages, $5.00 , 1983 .

[47]  F. Gracceva,et al.  Hydrogen perspectives in Italy: Analysis of possible deployment scenarios , 2008 .

[48]  J. R. Ravets,et al.  Post-Normal Science , 2006 .

[49]  F. Gracceva,et al.  Exploring the uncertainty around potential shale gas development – A global energy system analysis based on TIAM (TIMES Integrated Assessment Model) , 2013 .

[50]  Maryse Labriet,et al.  Is a 2 degrees Celsius warming achievable under high uncertainty? Analysis with the TIMES integrated assessment model , 2008 .

[51]  Ad Seebregts,et al.  Energy/Environmental Modeling with the MARKAL Family of Models , 2002 .

[52]  Luke Kemp,et al.  Better out than in , 2017 .

[53]  N. Strachan,et al.  Critical mid-term uncertainties in long-term decarbonisation pathways , 2012 .

[54]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[55]  Evelina Trutnevyte,et al.  EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective , 2013 .

[56]  Laura Uusitalo,et al.  An overview of methods to evaluate uncertainty of deterministic models in decision support , 2015, Environ. Model. Softw..

[57]  Will Paul Usher Investment uncertainty under stringent UK decarbonisation targets , 2010 .

[58]  R. Loulou,et al.  Climate mitigation under an uncertain technology future: A TIAM-World analysis , 2012 .

[59]  Guohe Huang,et al.  A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty , 2011 .

[60]  Alain Haurie,et al.  Combining Stochastic Optimization and Monte Carlo Simulation to Deal with Uncertainties in Climate Policy Assessment , 2012, Environmental Modeling & Assessment.

[61]  Amit Kanudia,et al.  Advanced bottom-up modelling for national and regional energy planning in response to climate change , 1997 .

[62]  Brian Ó Gallachóir,et al.  Long‐term energy models: Principles, characteristics, focus, and limitations , 2013 .

[63]  Will McDowall,et al.  Energy scenario choices: Insights from a retrospective review of UK energy futures , 2016 .

[64]  Fredrik Hedenus,et al.  How much can nuclear power reduce climate mitigation cost? – Critical parameters and sensitivity , 2015 .

[65]  R. Pindyck The Use and Misuse of Models for Climate Policy , 2015, Review of Environmental Economics and Policy.

[66]  A. Chiodi,et al.  The Role of Bioenergy in Ireland’s Low Carbon Future – is it Sustainable? , 2015 .

[67]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[68]  Massimiliano Renzi,et al.  Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency , 2014 .

[69]  Ian N. Durbach,et al.  Expert elicitation of autocorrelated time series with application to e3 (energy-environment-economic) forecasting models , 2017, Environ. Model. Softw..

[70]  Brian Ó Gallachóir,et al.  Soft-linking of a power systems model to an energy systems model , 2012 .

[71]  J. P. Deane,et al.  Energy Security Analysis: The case of constrained oil supply for Ireland , 2014 .

[72]  Timothy J. Wallington,et al.  Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy , 2013 .

[73]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[74]  Jean-Philippe Vial,et al.  Robust Optimization for Environmental and Energy Planning , 2009 .

[75]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[76]  Jan Rotmans,et al.  Uncertainty in Integrated Assessment Modelling , 2002 .

[77]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[78]  H. Holttinen,et al.  Global energy and emissions scenarios for effective climate change mitigation - Deterministic and stochastic scenarios with the TIAM model , 2008 .

[79]  Maryse Labriet,et al.  Energy Decisions in an Uncertain Climate and Technology Outlook: How Stochastic and Robust Methodologies Can Assist Policy-Makers , 2015 .

[80]  Jean-Philippe Waaub,et al.  Electrification of the Canadian Road Transportation Sector: A 2050 Outlook with TIMES-Canada , 2013 .

[81]  Anthony O'Hagan,et al.  Probabilistic uncertainty specification: Overview, elaboration techniques and their application to a mechanistic model of carbon flux , 2012, Environ. Model. Softw..

[82]  Jan Rotmans,et al.  Uncertainty in Integrated Assessment Modelling: A Labyrinthic Path , 2001 .

[83]  Mark Jaccard,et al.  Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal , 2006 .

[84]  Yolanda Lechón,et al.  Analysing the role of fusion power in the future global energy system , 2012 .

[85]  David W. Keith,et al.  Improving the way we think about projecting future energy use and emissions of carbon dioxide , 2008 .

[86]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[87]  J. P. Deane,et al.  LEAPs and Bounds—an Energy Demand and Constraint Optimised Model of the Irish Energy System , 2014 .

[88]  E. D. Brill,et al.  Modeling to Generate Alternatives: The HSJ Approach and an Illustration Using a Problem in Land Use Planning , 1982 .

[89]  Joseph F. DeCarolis,et al.  Modeling for insight using Tools for Energy Model Optimization and Analysis (Temoa) , 2013 .

[90]  Abbas Rabiee,et al.  Information gap decision theory approach to deal with wind power uncertainty in unit commitment , 2017 .

[91]  Leo Schrattenholzer,et al.  The Energy Supply Model MESSAGE , 1981 .

[92]  S. Jebaraja,et al.  A review of energy models , 2006 .

[93]  S. Messner,et al.  A stochastic version of the dynamic linear programming model MESSAGE III , 1996 .

[94]  Farzad Rahimi Mougouei,et al.  Effective Approaches to Energy Planning and Classification of Energy Systems Models , 2017 .

[95]  Patrícia Fortes,et al.  Integrated technological-economic modeling platform for energy and climate policy analysis , 2014 .

[96]  Leo Schrattenholzer,et al.  Costs of Reducing Carbon Emissions: An Integrated Modeling Framework Approach , 2003 .

[97]  P. E. Grohnheit,et al.  A global renewable energy system: A modelling exercise in ETSAP/TIAM , 2011 .

[98]  Chris Heaton Modelling Low-Carbon Energy System Designs with the ETI ESME Model , 2014 .

[99]  Anastasia Ioannou,et al.  Risk-based methods for sustainable energy system planning: a review , 2017 .

[100]  James Price,et al.  Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models , 2017 .

[101]  Robertas Alzbutas,et al.  Uncertainty and sensitivity analysis for economic optimisation of new energy source in Lithuania , 2012 .

[102]  Michael Grubb,et al.  Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the innovation Modeling Comparison Project , 2006 .

[103]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[104]  Emmanuel Fragnière,et al.  An approach to deal with uncertainty in energy and environmental planning: the MARKAL case , 2000 .

[105]  Neil Strachan,et al.  Myopic decision making in energy system decarbonisation pathways. A UK case study , 2017 .

[106]  Hal Turton,et al.  Conditions for the successful deployment of electric vehicles – A global energy system perspective , 2012 .

[107]  G. Goldstein,et al.  MESAP / TIMES — Advanced Decision Support for Energy and Environmental Planning , 2002 .

[108]  Roger J.-B. Wets,et al.  Chapter VIII Stochastic programming , 1989 .

[109]  B. Hobbs,et al.  Analysis of multi-pollutant policies for the U.S. power sector under technology and policy uncertainty using MARKAL , 2010 .

[110]  Daniel H. Loughlin,et al.  An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions , 2006, Proceedings of the IEEE.

[111]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[112]  Neil Strachan,et al.  Methodological review of UK and international low carbon scenarios , 2010 .

[113]  Pantelis Capros,et al.  Incorporating Uncertainty into World Energy Modelling: the PROMETHEUS Model , 2015, Environmental Modeling & Assessment.

[114]  Sten Karlsson,et al.  Cost-effective energy carriers for transport – The role of the energy supply system in a carbon-constrained world , 2010 .

[115]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[116]  Jean-Philippe Vial,et al.  Energy Security: A Robust Optimization Approach to Design a Robust European Energy Supply via TIAM-WORLD , 2012, Environmental Modeling & Assessment.

[117]  Sonja Peterson Uncertainty and economic analysis of climate change: A survey of approaches and findings , 2006 .

[118]  Subhes C. Bhattacharyya,et al.  A review of energy system models , 2010 .

[119]  T. Postelnicu Sachs, L.: Applied Statistics. A Handbook of Techniques. Springer-Verlag, New York — Heidelberg — Berlin 1982, 734 pp., 59 figs., DM 118,- , 1984 .

[120]  Evelina Trutnevyte,et al.  Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050 , 2017 .