Disclosing the role of solidification dynamics on the structural features, magnetic properties and dynamic magnetic behavior of a NiMnSn Heusler alloy

We report here a systematic investigation of the structural features, magnetic properties and dynamic magnetic behavior of Ni50Mn37Sn13 Heusler alloy solidified by using ceramic and metallic molds, which allow us to modify the solidification dynamics of the system without atmosphere control. Our findings reveal interesting modifications, not just in the structural properties of the material, but also in the quasi-static and dynamic magnetic properties of the samples. This analysis amplifies the spectrum of Ni50Mn37Sn13 Heusler alloys obtained using the induction furnace technique without a controlled atmosphere, placing such samples as interesting sensor elements in magnetic devices.

[1]  F. Bohn,et al.  Feasibility of Developing a Heusler NiMnSn Alloy via Induction Casting Without Controlled Atmosphere , 2021, MRS Communications.

[2]  J. Suñol,et al.  Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbons , 2021 .

[3]  V. Sokolovskiy,et al.  Theoretical Approach to Investigation of the Magnetic and Magnetocaloric Properties of Heusler Ni–Mn–Ga Alloys , 2020 .

[4]  Suyitno,et al.  The Influence of Mold Material on Cooling Curve, Solidification Parameters, and Micro-hardness of Al–6wt.%Si in Unidirectional Solidification , 2019, IOP Conference Series: Materials Science and Engineering.

[5]  M. Khan,et al.  Structural transformation and inverse magnetocaloric effect in Ni50Mn33In17 , 2019, Journal of Magnetism and Magnetic Materials.

[6]  Ł. Rogal,et al.  Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys , 2018, Journal of Crystal Growth.

[7]  R. Ramanujan,et al.  Magnetic field dependence of electrical resistivity and thermopower in Ni 50 Mn 37 Sn 13 ribbons , 2018 .

[8]  A. Mar,et al.  Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13−xCux alloys , 2017 .

[9]  W. Cai,et al.  Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping , 2017, Scientific Reports.

[10]  Y. Aydogdu,et al.  The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys , 2016 .

[11]  Minwei Xu,et al.  Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys , 2016, Scientific Reports.

[12]  R. Ramanujan,et al.  Magnetic field dependence of electrical resistivity and thermopower in Ni50Mn37Sn13 ribbons , 2015 .

[13]  R. Santamarta,et al.  Solidification process and effect of thermal treatments on Ni–Co–Mn–Sn metamagnetic shape memory alloys , 2015 .

[14]  T. Phan,et al.  Magnetocaloric and critical behavior in the austenitic phase of Gd-doped Ni50Mn37Sn13 Heusler alloys , 2014 .

[15]  F. Bohn,et al.  Magnetoimpedance effect at the high frequency range for the thin film geometry: Numerical calculation and experiment , 2014, 1411.0971.

[16]  T. Phan,et al.  Influence of fabrication conditions on giant magnetocaloric effect of Ni–Mn–Sn ribbons , 2013 .

[17]  S. Ram,et al.  Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11−x(x ⩽ 2) alloys , 2013, Science and technology of advanced materials.

[18]  Yuchao Yang,et al.  Structure and exchange bias of Ni50Mn37Sn13 ribbons , 2012 .

[19]  G. Eggeler,et al.  Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons , 2012 .

[20]  F. Bohn,et al.  Theoretical and experimental study of Fe/Cr nanometric quasiperiodic multilayers , 2011 .

[21]  M. Sanchez,et al.  Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons , 2008 .

[22]  Hua-Xin Peng,et al.  Giant magnetoimpedance materials: Fundamentals and applications , 2008 .

[23]  J. Pérez-Landazábal,et al.  Correlation between atomic order and the characteristics of the structural and magnetic transformations in Ni–Mn–Ga shape memory alloys , 2007 .

[24]  D. H. Wang,et al.  Large magnetic entropy changes in the Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy , 2006 .

[25]  Alfredo García-Arribas,et al.  Transition from quasistatic to ferromagnetic resonance regime in giant magnetoimpedance , 2006 .

[26]  S. Okamoto,et al.  Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy , 2006 .

[27]  R. McMichael,et al.  Localized ferromagnetic resonance in inhomogeneous thin films. , 2003, Physical review letters.

[28]  A. Layadi Exchange anisotropy: A ferromagnetic resonance study , 2002 .

[29]  G. Fraga,et al.  Spontaneous magnetoimpedance in the Heusler compounds Pd2MnSn and Pd2MnSb near the Curie temperature , 2002 .

[30]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[31]  Sung-chul Shin,et al.  Structure and ferromagnetic resonance of Tb/FeCo multilayer thin films , 1987 .

[32]  S. Kachi,et al.  Magnetic Properties and Phase Change of Ni 3− y Mn y Sn Alloy , 1981 .