Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter.

An all-solid-state laser transmitter for a water-vapor and temperature differential absorption lidar (DIAL) system in the near infrared is introduced. The laser system is based on a master-slave configuration. As the slave laser a Q-switched unidirectional alexandrite ring laser is used, which is injection seeded by the master laser, a cw Ti:sapphire ring laser. It is demonstrated that this laser system has, what is to my knowledge, the highest frequency stability (15 MHz rms), narrowest bandwidth (<40 MHz), and highest spectral purity (>99.99%) of all the laser transmitters developed to date in the near infrared. These specifications fulfill the requirements for water-vapor measurements with an error caused by laser properties of <5% and temperature measurements with an error caused by laser properties of <1 K in the whole troposphere. The specifications are maintained during long-term operation in the field. The single-mode operation of this laser system makes the narrow-band detection of the DIAL backscatter signal possible. Thus the system has the potential to be used for accurate temperature measurements and for simultaneous DIAL and Doppler wind measurements.

[1]  J Bösenberg Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. , 1998, Applied optics.

[2]  R T Menzies,et al.  Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species. , 1980, Applied optics.

[3]  S W Henderson,et al.  Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. , 1986, Optics letters.

[4]  Average refractive powers of an alexandrite laser rod , 1986 .

[5]  Lidar Measurements of the Vertical Absolute Humidity Distribution in the Boundary Layer , 1981 .

[6]  Sammy W. Henderson,et al.  Coherent laser radar at 2 μm using solid-state lasers , 1993, IEEE Trans. Geosci. Remote. Sens..

[7]  C. Hamilton Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision. , 1992, Optics letters.

[8]  Pierre H. Flamant,et al.  Lidar Monitoring of the Water Vapor Cycle in the Troposphere. , 1982 .

[9]  V. Magni Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability. , 1986, Applied optics.

[10]  S. Henderson,et al.  Remote wind profiling with a solid-state Nd:YAG coherent lidar system. , 1989, Optics letters.

[11]  P W Baker,et al.  Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar. , 1983, Applied optics.

[12]  R. Hardesty,et al.  Coherent DIAL measurement of range-resolved water vapor concentration. , 1984, Applied optics.

[13]  L. Rahn,et al.  Feedback stabilization of an injection-seeded Nd:YAG laser. , 1985, Applied Optics.

[14]  Edward V. Browell,et al.  First Lidar Measurements of Water Vapor and Aerosols from a High-Altitude Aircraft , 1995, Optical Remote Sensing of the Atmosphere.

[15]  Norman P. Barnes,et al.  Injection seeding. I. Theory , 1993 .

[16]  J. Bösenberg A differential absorption lidar system for high resolution water vapor measurements in the troposphere , 1991 .

[17]  Herwig Kogelnik,et al.  Imaging of optical modes — resonators with internal lenses , 1965 .

[18]  R. Hauck,et al.  Misalignment sensitivity of optical resonators. , 1980, Applied optics.

[19]  N. Menyuk,et al.  Atmospheric remote sensing of water vapor, HCl and CH(4) using a continuously tunable Co:MgF(2) laser. , 1987, Applied optics.

[20]  Jens Bösenberg,et al.  A Water Vapor DIAL System Using Diode Pumped Nd:YAG Lasers , 1997 .

[21]  A spectral limitation of the range resolved differential absorption lidar technique , 1981 .

[22]  V. Magni,et al.  Multielement stable resonators containing a variable lens , 1987 .

[23]  J. Bösenberg,et al.  Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar. , 1995, Optics letters.

[24]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.

[25]  J. Pelon,et al.  Injection-seeded pulsed alexandrite laser for differential absorption lidar application. , 1994, Applied optics.

[26]  Robert L. Byer,et al.  Single axial mode operation of a Q -switched Nd:YAG oscillator by injection seeding , 1984 .

[27]  T D Wilkerson,et al.  Water vapor differential absorption lidar development and evaluation. , 1979, Applied optics.

[28]  W. H. Lowdermilk,et al.  ND : YAG regenerative amplifier , 1980 .

[29]  J. Pelon,et al.  Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement. , 1991, Applied optics.

[30]  G. Herziger,et al.  Dynamic stable resonators: a design procedure , 1975 .

[31]  C. L. Korb,et al.  A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles , 1982 .

[32]  William B. Grant,et al.  Differential absorption and Raman lidar for water vapor profile measurements; A review , 1991 .

[33]  C. Kiemle,et al.  Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. , 1993, Applied optics.

[34]  B. Humbert,et al.  Temperature effect on a tilted birefringent filter in a tunable laser: A limitation for Raman spectroscopy , 1989 .

[35]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[36]  H. Walden,et al.  A lidar system for measuring atmospheric pressure and temperature profiles , 1987 .

[37]  E. Browell,et al.  Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. , 1989, Applied optics.

[38]  C. Weitkamp,et al.  Two-mirror multipass absorption cell. , 1981, Applied optics.

[39]  W B Grant,et al.  CO(2) DIAL measurements of water vapor. , 1987, Applied optics.

[40]  L. Bengtsson Problems of using satellite information in numerical weather prediction , 1979 .

[41]  W B Grant,et al.  Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. , 1994, Applied optics.

[42]  Differential Absorption Lidar Measurements of Atmospheric Temperature Profiles: Theory and Experiment , 1993 .

[43]  E. Remsberg,et al.  Analysis of differential absorption lidar from the space shuttle. , 1978, Applied optics.

[44]  Theodor W. Hänsch,et al.  A FREQUENCY-STABILIZED TITANIUM SAPPHIRE LASER FOR HIGH-RESOLUTION SPECTROSCOPY , 1990 .

[45]  P. A. Schulz Single-frequency Ti:Al/sub 2/O/sub 3/ ring laser , 1988 .

[46]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[47]  Rod thermal lensing effects in solid-state laser ring resonators , 1988 .

[48]  J. Wolf,et al.  Injection Seeding of a Flashlamp-Pumped Ti: Sapphire Laser for Lidar Applications , 1997 .

[49]  Dennis K. Killinger,et al.  Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles. , 1991, Applied optics.

[50]  J. Bösenberg,et al.  Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications. , 1998, Applied optics.

[52]  J. Bösenberg,et al.  Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar. , 1996, Optics letters.

[53]  T. Raymond,et al.  Injection-seeded titanium-doped-sapphire laser. , 1991, Optics letters.

[54]  V. Zuev,et al.  Laser sounding of atmospheric humidity: experiment. , 1983, Applied optics.

[55]  J. E. van der Laan,et al.  Atmospheric water vapor measurements with an infrared (10‐μm) differential‐absorption lidar system , 1976 .

[56]  J. C. Barnes,et al.  Injection seeding. II. Ti:Al/sub 2/O/sub 3/ experiments , 1993 .

[57]  A. Fix,et al.  Injection Seeded Optical Parametric Oscillator System for Water Vapor DIAL Measurements , 1997 .

[58]  H. Jenssen,et al.  Tunable-laser performance in BeAl(2)O(4):Cr(3+). , 1979, Optics letters.

[59]  E V Browell,et al.  Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system. , 1994, Applied optics.