Atomic force microscopy characterization of the surface wettability of natural fibres

[1]  Richard A. Venditti,et al.  Chemical force microscopy of cellulosic fibers , 2005 .

[2]  E. Ruckenstein,et al.  Microscopic interpretation of the dependence of the contact angle on roughness. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[3]  Eric D. Branson,et al.  Investigating the interface of superhydrophobic surfaces in contact with water. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[4]  R. Shanks,et al.  Morphology and structure of hemp fibre after bioscouring. , 2005, Macromolecular bioscience.

[5]  R. French Origins and Applications of London Dispersion Forces and Hamaker Constants in Ceramics , 2004 .

[6]  D. N. Roy,et al.  Structure Property Correlation of Thermally Treated Hemp Fiber , 2004 .

[7]  George C Schatz,et al.  How narrow can a meniscus be? , 2004, Physical review letters.

[8]  Thomas Lampke,et al.  Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior , 2002 .

[9]  F. L. Matthews,et al.  Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments , 2002 .

[10]  R. McMullen,et al.  Investigation of human hair fibers using lateral force microscopy. , 2001, Scanning.

[11]  M. Prince,et al.  Barrier Properties of Organic Monolayers on Glassy Carbon Electrodes , 2001 .

[12]  A. Błędzki,et al.  About the surface characteristics of natural fibres , 2000 .

[13]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[14]  Schindler,et al.  Data analysis of interaction forces measured with the atomic force microscope , 2000, Ultramicroscopy.

[15]  M. Ansell,et al.  The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement , 1999 .

[16]  F. Loth,et al.  Structural Changes in Hemp Fibers as a Result of Enzymatic Hydrolysis with Mixed Enzyme Systems , 1999 .

[17]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[18]  R. McKendry,et al.  Role of Surface Perfection in Chemical Force Microscopy. , 1998, Langmuir : the ACS journal of surfaces and colloids.

[19]  M. Salmeron,et al.  Wetting and capillary phenomena of water on mica , 1998 .

[20]  T. Rials,et al.  Relationship of wood surface energy to surface composition , 1998 .

[21]  Darrell H. Reneker,et al.  CHARACTERIZATION OF POLYMER SURFACES WITH ATOMIC FORCE MICROSCOPY , 1997 .

[22]  Abraham Marmur,et al.  Equilibrium contact angles : theory and measurement , 1996 .

[23]  T. Eastman,et al.  Adhesion Forces between Surface-Modified AFM Tips and a Mica Surface , 1996 .

[24]  J. Greve,et al.  Functional Group Imaging by Adhesion AFM Applied to Lipid Monolayers , 1995 .

[25]  Charles M. Lieber,et al.  Chemical Force Microscopy: Exploiting Chemically-Modified Tips To Quantify Adhesion, Friction, and Functional Group Distributions in Molecular Assemblies , 1995 .

[26]  C. Mate,et al.  Influence of capillary condensation of water on nanotribology studied by force microscopy , 1994 .

[27]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[28]  P. Tengvall,et al.  Interaction forces between a tungsten tip and methylated SiO2 surfaces studied with scanning force microscopy , 1992 .

[29]  Burnham,et al.  Probing the surface forces of monolayer films with an atomic-force microscope. , 1990, Physical review letters.

[30]  J. Israelachvili Intermolecular and surface forces , 1985 .

[31]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[32]  L. E. Scriven,et al.  Pendular rings between solids: meniscus properties and capillary force , 1975, Journal of Fluid Mechanics.

[33]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .