A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease

Mutations in the park2 gene, encoding the RING-inBetweenRING-RING E3 ubiquitin ligase parkin, cause 50% of autosomal recessive juvenile Parkinsonism cases. More than 70 known pathogenic mutations occur throughout parkin, many of which cluster in the inhibitory amino-terminal ubiquitin-like domain, and the carboxy-terminal RING2 domain that is indispensable for ubiquitin transfer. A structural rationale showing how autosomal recessive juvenile Parkinsonism mutations alter parkin function is still lacking. Here we show that the structure of parkin RING2 is distinct from canonical RING E3 ligases and lacks key elements required for E2-conjugating enzyme recruitment. Several pathogenic mutations in RING2 alter the environment of a single surface-exposed catalytic cysteine to inhibit ubiquitination. Native parkin adopts a globular inhibited conformation in solution facilitated by the association of the ubiquitin-like domain with the RING-inBetweenRING-RING C-terminus. Autosomal recessive juvenile Parkinsonism mutations disrupt this conformation. Finally, parkin autoubiquitinates only in cis, providing a molecular explanation for the recessive nature of autosomal recessive juvenile Parkinsonism.

[1]  C. Duyckaerts,et al.  Parkin Deficiency Delays Motor Decline and Disease Manifestation in a Mouse Model of Synucleinopathy , 2009, PloS one.

[2]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[3]  David A. Snyder,et al.  Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data. , 2006, Journal of biomolecular NMR.

[4]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[5]  Z. Pan,et al.  Selective Recruitment of an E2∼Ubiquitin Complex by an E3 Ubiquitin Ligase* , 2012, The Journal of Biological Chemistry.

[6]  J. Huibregtse,et al.  Regulation of catalytic activities of HECT ubiquitin ligases. , 2007, Biochemical and biophysical research communications.

[7]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[8]  M. Ruberg,et al.  The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates , 2003, Neurobiology of Disease.

[9]  K. Lim,et al.  Parkin Mediates Apparent E2-Independent Monoubiquitination In Vitro and Contains an Intrinsic Activity That Catalyzes Polyubiquitination , 2011, PloS one.

[10]  J. C. Greene,et al.  Immune responses , 2004 .

[11]  Rachel E. Klevit,et al.  UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids , 2011, Nature.

[12]  N. Hattori,et al.  Diverse Effects of Pathogenic Mutations of Parkin That Catalyze Multiple Monoubiquitylation in Vitro* , 2006, Journal of Biological Chemistry.

[13]  G. Marius Clore,et al.  Using Xplor-NIH for NMR molecular structure determination , 2006 .

[14]  Ignacio Marín,et al.  Comparative genomics and protein domain graph analyses link ubiquitination and RNA metabolism. , 2006, Journal of molecular biology.

[15]  K. Lim,et al.  Jcb: Report , 2022 .

[16]  E. Hirsch,et al.  Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. , 2003, Human molecular genetics.

[17]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[18]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[19]  J. Wrana,et al.  Autoinhibition of the HECT-Type Ubiquitin Ligase Smurf2 through Its C2 Domain , 2007, Cell.

[20]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[21]  A. Brice,et al.  Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. , 2006, Human molecular genetics.

[22]  V. Hristova,et al.  Identification of a Novel Zn2+-binding Domain in the Autosomal Recessive Juvenile Parkinson-related E3 Ligase Parkin* , 2009, Journal of Biological Chemistry.

[23]  A. Brice,et al.  A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling , 2006, Nature Cell Biology.

[24]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[25]  K. Tomoo,et al.  Crystal structure and molecular dynamics simulation of ubiquitin-like domain of murine parkin. , 2008, Biochimica et biophysica acta.

[26]  A. Markham,et al.  Features of the Parkin/Ariadne-like Ubiquitin Ligase, HHARI, That Regulate Its Interaction with the Ubiquitin-conjugating Enzyme, UbcH7* , 2001, The Journal of Biological Chemistry.

[27]  R. Osman,et al.  Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail , 2008, Proceedings of the National Academy of Sciences.

[28]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[29]  Li Chen,et al.  α-Synuclein and Parkin Contribute to the Assembly of Ubiquitin Lysine 63-linked Multiubiquitin Chains* , 2005, Journal of Biological Chemistry.

[30]  T. Sixma,et al.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension , 2012, The EMBO journal.

[31]  N. Thakor,et al.  Parkin Facilitates the Elimination of Expanded Polyglutamine Proteins and Leads to Preservation of Proteasome Function* , 2003, Journal of Biological Chemistry.

[32]  R. Youle,et al.  p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both , 2010, Autophagy.

[33]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[34]  北田 徹 Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1999 .

[35]  T. Mizushima,et al.  A non‐canonical UBA–UBL interaction forms the linear‐ubiquitin‐chain assembly complex , 2012, EMBO reports.

[36]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.

[37]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[38]  H. Walden,et al.  Regulation of Parkin E3 ubiquitin ligase activity , 2012, Cellular and Molecular Life Sciences.

[39]  T. Dawson,et al.  Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Scheffner,et al.  The Ubiquitin-conjugating Enzymes UbcH7 and UbcH8 Interact with RING Finger/IBR Motif-containing Domains of HHARI and H7-AP1* , 1999, The Journal of Biological Chemistry.

[41]  See-Kiong Ng,et al.  MDPD: an integrated genetic information resource for Parkinson's disease , 2009, Nucleic Acids Res..

[42]  Kenneth Wu,et al.  Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. , 2004, Journal of molecular biology.

[43]  V. Hristova,et al.  Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease , 2007, Proceedings of the National Academy of Sciences.

[44]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[45]  A. Ferrús,et al.  Parkin and relatives: the RBR family of ubiquitin ligases. , 2004, Physiological genomics.

[46]  Marc Cruts,et al.  Genetic Etiology of Parkinson Disease Associated with Mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 Genes: A Mutation Update , 2010, Human mutation.

[47]  S. Yokoyama,et al.  NMR structure of ubiquitin-like domain in PARKIN: gene product of familial Parkinson's disease. , 2003, Journal of biomolecular NMR.

[48]  D. Vaux,et al.  Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment* , 2008, Journal of Biological Chemistry.

[49]  H. Walden,et al.  Autoregulation of Parkin activity through its ubiquitin‐like domain , 2011, The EMBO journal.

[50]  N. Hattori,et al.  Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin‐like domain , 2003, EMBO reports.

[51]  Greg L. Hura,et al.  E2 interaction and dimerization in the crystal structure of TRAF6 , 2009, Nature Structural &Molecular Biology.

[52]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[53]  G. Shaw,et al.  Solution structure of the E3 ligase HOIL‐1 Ubl domain , 2012, Protein science : a publication of the Protein Society.

[54]  Shinsei Minoshima,et al.  Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase , 2000, Nature Genetics.

[55]  K. Rittinger,et al.  LUBAC synthesizes linear ubiquitin chains via a thioester intermediate , 2012, EMBO reports.

[56]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[57]  C. Day,et al.  RINGs hold the key to ubiquitin transfer. , 2012, Trends in biochemical sciences.

[58]  K. Lim,et al.  Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. , 2005, Human molecular genetics.

[59]  Craig J. Thalhauser,et al.  Identification of histidine tautomers in proteins by 2D 1H/13C(delta2) one-bond correlated NMR. , 2003, Journal of the American Chemical Society.

[60]  K. Borden RING fingers and B-boxes: zinc-binding protein-protein interaction domains. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[61]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[62]  Y. Imai,et al.  Parkin Suppresses Unfolded Protein Stress-induced Cell Death through Its E3 Ubiquitin-protein Ligase Activity* , 2000, The Journal of Biological Chemistry.