Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number

A 2-hued coloring of a graph G is a coloring such that, for every vertex [email protected]?V(G) of degree at least 2, the neighbors of v receive at least two colors. The smallest integer k such that G has a 2-hued coloring with k colors is called the 2-hued chromatic number of G, and is denoted by @g"2(G). In this paper, we will show that, if G is a regular graph, then @g"2(G)[email protected](G)@?2log"2(@a(G))+3, and, if G is a graph and @d(G)>=2, then @g"2(G)[email protected](G)@[email protected][email protected]^[email protected]@?(1+log"2"@D"("G")"2"@D"("G")"-"@d"("G")(@a(G))), and in the general case, if G is a graph, then @g"2(G)[email protected](G)@?2+min{@a^'(G),@a(G)[email protected](G)2}.

[1]  Saieed Akbari,et al.  On the Dynamic Coloring of Cartesian Product Graphs , 2014, Ars Comb..

[2]  Hossein Hajiabolhassan On colorings of graph powers , 2009, Discret. Math..

[3]  Wenli Zhou,et al.  Complexity of conditional colorability of graphs , 2007, Appl. Math. Lett..

[4]  Saieed Akbari,et al.  On the difference between chromatic number and dynamic chromatic number of graphs , 2012, Discret. Math..

[5]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[6]  Louis Esperet,et al.  Dynamic list coloring of bipartite graphs , 2010, Discret. Appl. Math..

[7]  Elzbieta Sidorowicz,et al.  Dynamic Coloring of Graphs , 2012, Fundam. Informaticae.

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  Hong-Jian Lai,et al.  Conditional colorings of graphs , 2006, Discret. Math..

[10]  Bruce Montgomery Dynamic coloring of graphs , 2002 .

[11]  S. Akbari,et al.  On the list dynamic coloring of graphs , 2009, Discret. Appl. Math..

[12]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[13]  Saieed Akbari,et al.  On the Dynamic Coloring of Strongly Regular Graphs , 2014, Ars Comb..

[14]  Hong-Jian Lai,et al.  Upper Bounds of Dynamic Chromatic Number , 2003, Ars Comb..

[15]  Wenli Zhou,et al.  The 2nd-order conditional 3-coloring of claw-free graphs , 2008, Theor. Comput. Sci..