Joint Learning Templates and Slots for Event Schema Induction

Automatic event schema induction (AESI) means to extract meta-event from raw text, in other words, to find out what types (templates) of event may exist in the raw text and what roles (slots) may exist in each event type. In this paper, we propose a joint entity-driven model to learn templates and slots simultaneously based on the constraints of templates and slots in the same sentence. In addition, the entities' semantic information is also considered for the inner connectivity of the entities. We borrow the normalized cut criteria in image segmentation to divide the entities into more accurate template clusters and slot clusters. The experiment shows that our model gains a relatively higher result than previous work.

[1]  Lynette Hirschman,et al.  Evaluating Message Understanding Systems: An Analysis of the Third Message Understanding Conference (MUC-3) , 1993, CL.

[2]  Tim Oates,et al.  Mining Script-Like Structures from the Web , 2010, HLT-NAACL 2010.

[3]  Siddharth Patwardhan,et al.  A Unified Model of Phrasal and Sentential Evidence for Information Extraction , 2009, EMNLP.

[4]  Benjamin Van Durme,et al.  Finding Cars, Goddesses and Enzymes: Parametrizable Acquisition of Labeled Instances for Open-Domain Information Extraction , 2008, AAAI.

[5]  S. Srinivasan,et al.  A Survey of Text Mining : Retrieval , Extraction and Indexing Techniques , 2012 .

[6]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[7]  Ellen Riloff,et al.  Exploiting Subjectivity Classification to Improve Information Extraction , 2005, AAAI.

[8]  Nathanael Chambers,et al.  Template-Based Information Extraction without the Templates , 2011, ACL.

[9]  Regina Barzilay,et al.  In-domain Relation Discovery with Meta-constraints via Posterior Regularization , 2011, ACL.

[10]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Event Chains , 2008, ACL.

[11]  Ellen Riloff,et al.  Inducing Domain-Specific Semantic Class Taggers from (Almost) Nothing , 2010, ACL.

[12]  Estevam R. Hruschka,et al.  Coupled semi-supervised learning for information extraction , 2010, WSDM '10.

[13]  Oren Etzioni,et al.  Generating Coherent Event Schemas at Scale , 2013, EMNLP.

[14]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Heng Ji,et al.  Refining Event Extraction through Cross-Document Inference , 2008, ACL.

[16]  Mihai Surdeanu,et al.  A Hybrid Approach for the Acquisition of Information Extraction Patterns , 2006 .

[17]  Maria Leonor Pacheco,et al.  of the Association for Computational Linguistics: , 2001 .

[18]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[19]  Haim H. Permuter,et al.  Alternating maximization procedure for finding the global maximum of directed information , 2010, 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel.

[20]  Satoshi Sekine,et al.  On-Demand Information Extraction , 2006, ACL.

[21]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[22]  Ralph Grishman,et al.  Automatic Acquisition of Domain Knowledge for Information Extraction , 2000, COLING.

[23]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[24]  Satoshi Sekine,et al.  Preemptive Information Extraction using Unrestricted Relation Discovery , 2006, NAACL.

[25]  Oren Etzioni,et al.  TextRunner: Open Information Extraction on the Web , 2007, NAACL.

[26]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[27]  Vasileios Hatzivassiloglou,et al.  Automatic Creation of Domain Templates , 2006, ACL.

[28]  Romaric Besançon,et al.  Generative Event Schema Induction with Entity Disambiguation , 2015, ACL.

[29]  Siddharth Patwardhan,et al.  Effective Information Extraction with Semantic Affinity Patterns and Relevant Regions , 2007, EMNLP.

[30]  Oren Etzioni,et al.  Open Information Extraction from the Web , 2007, CACM.

[31]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Schemas and their Participants , 2009, ACL.

[32]  Ralph Grishman,et al.  An Improved Extraction Pattern Representation Model for Automatic IE Pattern Acquisition , 2003, ACL.

[33]  Ellen Riloff,et al.  An Empirical Approach to Conceptual Case Frame Acquisition , 1998, VLC@COLING/ACL.

[34]  Razvan C. Bunescu,et al.  Collective Information Extraction with Relational Markov Networks , 2004, ACL.

[35]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[36]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  Jackie Chi Kit Cheung,et al.  Probabilistic Frame Induction , 2013, NAACL.

[38]  Beth Sundheim Third Message Understanding Evaluation and Conference (MUC-3): Phase 1 Status Report , 1991, HLT.

[39]  Nathanael Chambers,et al.  Event Schema Induction with a Probabilistic Entity-Driven Model , 2013, EMNLP.

[40]  Hwee Tou Ng,et al.  Closing the Gap: Learning-Based Information Extraction Rivaling Knowledge-Engineering Methods , 2003, ACL.

[41]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.