Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T

Mapping mesoscopic cortical functional units such as columns or laminae is increasingly pursued by ultra-high field (UHF) functional magnetic resonance imaging (fMRI). The most popular approach for high-resolution fMRI is currently gradient-echo (GE) blood oxygenation level-dependent (BOLD) fMRI. However, its spatial accuracy is reduced due to its sensitivity to draining vessels, including pial veins, whereas spin-echo (SE) BOLD signal is expected to have higher spatial accuracy, albeit with lower sensitivity than the GE-BOLD signal. Here, we introduce a new double spin-echo (dSE) echo-planar imaging (EPI) method to improve the sensitivity of SE-BOLD contrast by averaging two spin-echoes using three radiofrequency pulses. Human fMRI experiments were performed with slices perpendicular to the central sulcus between motor and sensory cortices at 7 T during fist-clenching with touching. First, we evaluated the feasibility of single-shot dSE-EPI for BOLD fMRI with 1.5 mm isotropic resolution and found that dSE-BOLD fMRI has higher signal-to-noise ratio (SNR), temporal SNR (tSNR), and higher functional sensitivity than conventional SE-BOLD fMRI. Second, to investigate the laminar specificity of dSE-BOLD fMRI, we implemented a multi-shot approach to achieve 0.8-mm isotropic resolution with sliding-window reconstruction. Unlike GE-BOLD fMRI, the cortical profile of dSE-BOLD fMRI peaked at ∼ 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity in humans over GE-BOLD fMRI. The proposed multi-shot dSE-EPI method is viable for high spatial resolution UHF-fMRI studies in the pursuit of resolving mesoscopic functional units.

[1]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[2]  Klaus Scheffler,et al.  The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI , 2017, NeuroImage.

[3]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[4]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[5]  Gang Chen,et al.  Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex , 2019, Science Advances.

[6]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[7]  S. Ogawa,et al.  Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  W Huk,et al.  QUEST ‐ a quick echo split nmr imaging technique , 1993, Magnetic resonance in medicine.

[9]  Kawin Setsompop,et al.  Accelerated spin‐echo functional MRI using multisection excitation by simultaneous spin‐echo interleaving (MESSI) with complex‐encoded generalized slice dithered enhanced resolution (cgSlider) simultaneous multislice echo‐planar imaging , 2019, Magnetic resonance in medicine.

[10]  Josef Pfeuffer,et al.  Isotropic submillimeter fMRI in the human brain at 7 T: Combining reduced field‐of‐view imaging and partially parallel acquisitions , 2012, Magnetic resonance in medicine.

[11]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[12]  R. Goebel,et al.  Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI , 2011, PloS one.

[13]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[14]  Essa Yacoub,et al.  Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI , 2015, Front. Neurosci..

[15]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[16]  Klaus Scheffler,et al.  High‐resolution mapping of neuronal activation with balanced SSFP at 9.4 tesla , 2016, Magnetic resonance in medicine.

[17]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[18]  Laurentius Huber,et al.  Comparison of BOLD and CBV using 3D EPI and 3D GRASE for cortical layer functional MRI at 7 T , 2020, Magnetic resonance in medicine.

[19]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[20]  Seong-Gi Kim,et al.  High-resolution functional magnetic resonance imaging of the animal brain. , 2003, Methods.

[21]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[22]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[23]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[24]  David G Norris,et al.  Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation , 2011, Magnetic resonance in medicine.

[25]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[26]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[27]  C. Counsell PREVIEW: a new ultrafast imaging sequence requiring minimal gradient switching. , 1993, Magnetic resonance imaging.

[28]  X. Hu,et al.  Fast interleaved echo‐planar imaging with navigator: High resolution anatomic and functional images at 4 tesla , 1996, Magnetic resonance in medicine.

[29]  Essa Yacoub,et al.  Zoomed Functional Imaging in the Human Brain at 7 Tesla with Simultaneous High Spatial and High Temporal Resolution , 2002, NeuroImage.

[30]  D. Yablonskiy,et al.  Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T  *2 , and non‐Lorentzian signal behavior , 2001, Magnetic resonance in medicine.

[31]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[32]  R S Menon,et al.  Investigation of BOLD contrast in fMRI using multi‐shot EPI , 1997, NMR in biomedicine.

[33]  Felix W Wehrli,et al.  Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification , 2012, Magnetic resonance in medicine.

[34]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[35]  Tao Jin,et al.  Sources of functional apparent diffusion coefficient changes investigated by diffusion‐weighted spin‐echo fMRI , 2006, Magnetic resonance in medicine.

[36]  Fritz Schick,et al.  Whole-body MRI at high field: technical limits and clinical potential , 2005, European Radiology.

[37]  S. Posse,et al.  Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging , 1999, Magnetic resonance in medicine.

[38]  S. Francis,et al.  Spatial location and strength of BOLD activation in high‐spatial‐resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T , 2012, NMR in biomedicine.

[39]  Robert Turner,et al.  Slab‐selective, BOLD‐corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal‐to‐noise ratio , 2014, Magnetic resonance in medicine.

[40]  Fuqiang Zhao,et al.  Cortical depth‐dependent gradient‐echo and spin‐echo BOLD fMRI at 9.4T , 2004, Magnetic resonance in medicine.

[41]  B. Douglas Ward,et al.  A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method , 2008, NeuroImage.

[42]  Laurentius Huber,et al.  Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex , 2018, NeuroImage.

[43]  S. H. Han,et al.  Robust MR assessment of cerebral blood volume and mean vessel size using SPION-enhanced ultrashort echo acquisition , 2015, NeuroImage.

[44]  Seong-Gi Kim,et al.  Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY , 2017, NeuroImage.

[45]  Richard C. Reynolds,et al.  LayNii: A software suite for layer-fMRI , 2020, NeuroImage.

[46]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[47]  Karla L. Miller,et al.  FMRI using balanced steady-state free precession (SSFP) , 2012, NeuroImage.

[48]  S. Riederer,et al.  Analysis of T2 limitations and off‐resonance effects on spatial resolution and artifacts in echo‐planar imaging , 1990, Magnetic resonance in medicine.

[49]  Paul M. Matthews,et al.  Functional magnetic resonance imaging: An introduction to methods , 2001 .

[50]  Peter J. Koopmans,et al.  BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla , 2014, Front. Neurosci..

[51]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[52]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[53]  Peter J. Koopmans,et al.  Whole brain, high resolution multiband spin-echo EPI fMRI at 7T: A comparison with gradient-echo EPI using a color-word Stroop task , 2014, NeuroImage.

[54]  Martin Havlicek,et al.  A dynamical model of the laminar BOLD response , 2019, NeuroImage.

[55]  D. Feinberg,et al.  GRASE (Gradient‐and Spin‐Echo) imaging: A novel fast MRI technique , 1991, Magnetic resonance in medicine.

[56]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[57]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[58]  Benedikt A. Poser,et al.  Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals , 2017, NeuroImage.

[59]  S J Riederer,et al.  Interleaved echo planar imaging on a standard MRI system , 1994, Magnetic resonance in medicine.

[60]  Keith J. Worsley,et al.  Statistical analysis of activation images , 2001 .

[61]  Kawin Setsompop,et al.  Ultra‐high spatial resolution BOLD fMRI in humans using combined segmented‐accelerated VFA‐FLEET with a recursive RF pulse design , 2020, Magnetic resonance in medicine.

[62]  Johannes Reichold,et al.  The microvascular system of the striate and extrastriate visual cortex of the macaque. , 2008, Cerebral cortex.

[63]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[64]  Peter J. Koopmans,et al.  Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T , 2012, NeuroImage.

[65]  Richard Bowtell,et al.  T2* measurements in human brain at 1.5, 3 and 7 T. , 2007, Magnetic resonance imaging.

[66]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[67]  David G. Norris,et al.  Spin-echo fMRI: The poor relation? , 2012, NeuroImage.

[68]  Kawin Setsompop,et al.  A low power radiofrequency pulse for simultaneous multislice excitation and refocusing , 2014, Magnetic resonance in medicine.

[69]  J. Hyde,et al.  Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression , 2004, Magnetic resonance in medicine.

[70]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[71]  Klaus Scheffler,et al.  Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T , 2014, Magnetic resonance in medicine.

[72]  David G Norris,et al.  High field human imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[73]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[74]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[75]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[76]  Ravi S. Menon,et al.  Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI , 2001, Human brain mapping.

[77]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[78]  Kamil Ugurbil,et al.  Enhanced relative BOLD signal changes in T2‐weighted stimulated echoes , 2007, Magnetic resonance in medicine.

[79]  David C. Jangraw,et al.  Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges , 2018, NeuroImage.

[80]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[81]  Ravi S. Menon,et al.  Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: Implications for the vascular point‐spread function , 1999, Magnetic resonance in medicine.

[82]  Jun Hua,et al.  Noninvasive functional imaging of cerebral blood volume with vascular‐space‐occupancy (VASO) MRI , 2013, NMR in biomedicine.

[83]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Dimo Ivanov,et al.  Feedback contribution to surface motion perception in the human early visual cortex , 2020, eLife.

[85]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[86]  D. Norris,et al.  BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI , 2006, Magnetic resonance in medicine.

[87]  Mitsuhiro Fukuda,et al.  Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb , 2015, The Journal of Neuroscience.

[88]  E R McVeigh,et al.  Quantification and reduction of ghosting artifacts in interleaved echo‐planar imaging , 1997, Magnetic resonance in medicine.

[89]  J Hennig,et al.  Detection of BOLD changes by means of a frequency‐sensitive trueFISP technique: preliminary results , 2001, NMR in biomedicine.

[90]  L Kaufman,et al.  Inner volume MR imaging: technical concepts and their application. , 1985, Radiology.

[91]  Essa Yacoub,et al.  High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4 T , 2018, NeuroImage.