Cucurbituril-modulated supramolecular assemblies: from cyclic oligomers to linear polymers.

Employing bis(p-sulfonatocalix[4]arenes) (bisSC4A) and N',N''hexamethylenebis(1-methyl-4,4'-bipyridinium) (HBV(4+)) as monomer building blocks, the assembly morphologies can be modulated by cucurbit[n]uril (CB[n]) (n = 7, 8), achieving the interesting topological conversion from cyclic oligomers to linear polymers. The binary supramolecular assembly fabricated by HBV(4+) and bisSC4A units, forms an oligomeric structure, which was characterized by NMR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and gel permeation chromatography (GPC) experiments. The ternary supramolecular polymer participated by CB[8] is constructed on the basis of host-guest interactions by bisSC4A and the [2]pseudorotaxane HBV(4+)@CB[8], which is characterized by means of AFM, DLS, NMR spectroscopy, thermogravimetric analysis (TGA), UV/Vis spectroscopy, and elemental analysis. CB[n] plays vital roles in rigidifying the conformation of HBV(4+), and reinforcing the host-guest inclusion of bisSC4A with HBV(4+), which prompts the formation of a linear polymer. Moreover, the CB[8]-participated ternary assembly could disassemble into the molecular loop HBV(2+)@CB[8] and free bisSC4A after reduction of HBV(4+) to HBV(2+), whereas the CB[7]-based assembly remained unchanged after the reduction. CB[8] not only controlled the topological conversion of the supramolecular assemblies, but also improved the redox-responsive assembly/disassembly property practically.

[1]  J. Lehn,et al.  Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[3]  S. Yagai,et al.  Binary supramolecular gels based on bismelamine.cyanurate/barbiturate noncovalent polymers , 2004 .

[4]  E. Coronado,et al.  Catenanes and threaded systems: from solution to surfaces. , 2009, Chemical Society reviews.

[5]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[6]  Nori Yamaguchi,et al.  BILDUNG SUPRAMOLEKULARER POLYMERE AUS HOMODITOPEN BAUSTEINEN, DIE SEKUNDARE AMMONIOGRUPPEN UND KRONENETHEREINHEITEN ENTHALTEN , 1999 .

[7]  Ulrich S. Schubert,et al.  New Functional Polymers and Materials Based on 2,2′:6′,2″‐Terpyridine Metal Complexes , 2004 .

[8]  U. Schubert,et al.  Makromoleküle mit Bipyridin- und Terpyridinkomplexen als Verknüpfungsstellen: erste Schritte auf dem Weg zu metallo-supramolekularen Polymeren , 2002 .

[9]  Y. Takashima,et al.  Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility , 2005 .

[10]  Oren A Scherman,et al.  Supramolecular block copolymers with cucurbit[8]uril in water. , 2008, Angewandte Chemie.

[11]  A. Harada,et al.  Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests , 2004 .

[12]  Y. Takashima,et al.  External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. , 2007, Journal of the American Chemical Society.

[13]  A. Harada Supramolecular polymers based on cyclodextrins , 2006 .

[14]  Xi Zhang,et al.  Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. , 2009, Chemical communications.

[15]  T. Park,et al.  A supramolecular multi-block copolymer with a high propensity for alternation. , 2006, Journal of the American Chemical Society.

[16]  Y. Ko,et al.  Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. , 2004, Chemical communications.

[17]  Y. Fukazawa,et al.  Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. , 2005, Journal of the American Chemical Society.

[18]  S. Shinkai,et al.  Thermo- and solvent-responsive polymer complex created from supramolecular complexation between a helix-forming polysaccharide and a cationic polythiophene. , 2010, Journal of the American Chemical Society.

[19]  Ning Li,et al.  Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. , 2008, Journal of the American Chemical Society.

[20]  Bo Zheng,et al.  A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. , 2011, Angewandte Chemie.

[21]  Yu Liu,et al.  Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4,5]arenes. , 2007, The Journal of organic chemistry.

[22]  Y. Takashima,et al.  Supramolecular Polymers Formed from β-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers , 2005 .

[23]  J. F. Stoddart,et al.  Bifunctional [c2]daisy-chains and their incorporation into mechanically interlocked polymers. , 2007, Journal of the American Chemical Society.

[24]  L. Galantini,et al.  Thermodynamics of formation of host-guest supramolecular polymers. , 2006, Journal of the American Chemical Society.

[25]  H. Gibson,et al.  Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules. , 2003, Journal of the American Chemical Society.

[26]  Y. Takashima,et al.  A chemical-responsive supramolecular hydrogel from modified cyclodextrins. , 2007, Angewandte Chemie.

[27]  Eunju Kim,et al.  Supramolecular assemblies built with host-stabilized charge-transfer interactions. , 2007, Chemical communications.

[28]  Yu Liu,et al.  Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. , 2007, The Journal of organic chemistry.

[29]  Andreas F. M. Kilbinger,et al.  Hockey-Puck micelles from oligo(p-benzamide)-b-PEG rod-coil block copolymers. , 2006, Angewandte Chemie.

[30]  Oren A Scherman,et al.  Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. , 2010, Journal of the American Chemical Society.

[31]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[32]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[33]  J. Lehn,et al.  Metallodynamers: neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. , 2007, Angewandte Chemie.

[34]  Y. Takashima,et al.  Chiral supramolecular polymers formed by host-guest interactions. , 2005, Journal of the American Chemical Society.

[35]  A. J. Lovinger,et al.  Hierarchy of Order in Liquid Crystalline Polycaps. , 1999, Angewandte Chemie.

[36]  Hao Wang,et al.  Water-soluble supramolecular fullerene assembly mediated by metallobridged beta-cyclodextrins. , 2004, Angewandte Chemie.

[37]  Y. Ko,et al.  Pseudopolyrotaxanes Made to Order: Cucurbituril Threaded on Polyviologen , 2002 .

[38]  Yu Liu,et al.  Effect of Lower-Rim Alkylation of p-Sulfonatocalix(4)arene on the Thermodynamics of Host-Guest Complexation , 2010 .

[39]  Yu Liu,et al.  Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calix[4]arene Derivative , 2002 .

[40]  Julius Rebek,et al.  HIERARCHISCHE ORDNUNG BEI FLUSSIGKRISTALLINEN POLYKAPSELN , 1999 .

[41]  Yan-Li Zhao,et al.  Bundle-shaped cyclodextrin-Tb nano-supramolecular assembly mediated by C60: intramolecular energy transfer. , 2006, Nano letters.

[42]  David J. Williams,et al.  Inclusion networks of a calix[5]arene-based exoditopic receptor and long-chain alkyldiammonium ions. , 2003, Organic letters.

[43]  Feihe Huang,et al.  Polypseudorotaxanes and polyrotaxanes , 2005 .

[44]  C. Gaeta,et al.  endo-Cavity complexation and through-the-annulus threading of large calixarenes induced by very loose alkylammonium ion pairs. , 2010, Organic letters.

[45]  Xi Zhang,et al.  Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. , 2010, Angewandte Chemie.

[46]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[47]  Douglas C. Friedman,et al.  Redox-driven switching in pseudorotaxanes , 2009 .

[48]  W. Nau,et al.  Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes , 2007, Nature Methods.

[49]  E. W. Meijer,et al.  Supramolecular polymers at work , 2004 .

[50]  S. Nozakura,et al.  PHOTOINDUCED TWO-ELECTRON REDUCTION OF METHYL VIOLOGEN DIMER BY 2-PROPANOL THROUGH INTRAMOLECULAR PROCESS AND FORMATION OF VIOLOGEN RADICAL CATION DIMER , 1980 .

[51]  Yong Chen,et al.  Cooperative binding and multiple recognition by bridged bis(beta-cyclodextrin)s with functional linkers. , 2006, Accounts of chemical research.

[52]  E. W. Meijer,et al.  Selective Formation of Cyclic Dimers in Solutions of Reversible Supramolecular Polymers , 2001 .

[53]  Jun Xu,et al.  Modular, well-behaved reversible polymers from DNA-based monomers. , 2002, Angewandte Chemie.

[54]  Akira Harada,et al.  Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins. , 2008, Chemistry, an Asian journal.

[55]  J. Lehn,et al.  Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays--formation, characterization, and properties. , 2002, Chemistry.

[56]  Jae Wook Lee,et al.  A [2]pseudorotaxane-based molecular machine: reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. , 2003, Angewandte Chemie.

[57]  Y. Cohen,et al.  Self-assembly dynamics of modular homoditopic bis-calix[5]arenes and long-chain alpha,omega-alkanediyldiammonium components. , 2008, The Journal of organic chemistry.

[58]  J. Fettinger,et al.  Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions. , 2004, Journal of the American Chemical Society.

[59]  Kimoon Kim,et al.  Control of the stoichiometry in host-guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. , 2002, Chemical communications.

[60]  Yu Liu,et al.  Nano-supramolecular assemblies constructed from water-soluble bis(calix[5]arenes) with porphyrins and their photoinduced electron transfer properties. , 2009, Chemistry, an Asian journal.

[61]  Masao Kawai,et al.  Sequential formation of a ternary complex among dihexylammonium, cucurbit[6]uril, and cyclodextrin with positive cooperativity. , 2006, Organic letters.

[62]  Heiner Friedrich,et al.  Abbildung selbstorganisierter Strukturen: Interpretation von TEM‐ und Kryo‐TEM‐Aufnahmen , 2010 .

[63]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[64]  R. Purrello,et al.  Sequence, stoichiometry, and dimensionality control in porphyrin/bis-calix[4]arene self-assemblies in aqueous solution. , 2010, Chemistry.

[65]  C. Nuckolls,et al.  Emergent mechanical properties of self-assembled polymeric capsules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[67]  T. Takata,et al.  A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. , 2004, Angewandte Chemie.

[68]  L. Sánchez,et al.  Self-organization of electroactive materials: a head-to-tail donor-acceptor supramolecular polymer. , 2008, Angewandte Chemie.

[69]  U. Schubert,et al.  Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. , 2002, Angewandte Chemie.

[70]  Yu Liu,et al.  Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. , 2010, Chemical communications.

[71]  D. Reinhoudt,et al.  Interconnective host-guest complexation of b-cyclodextrin-calix[4]arene couples , 1999 .

[72]  Ruibing Wang,et al.  Binding modes of cucurbit[6]uril and cucurbit[7]uril with a tetracationic bis(viologen) guest. , 2007, The Journal of organic chemistry.

[73]  Heiner Friedrich,et al.  Imaging of self-assembled structures: interpretation of TEM and cryo-TEM images. , 2010, Angewandte Chemie.

[74]  Y. Cohen,et al.  Counterion-dependent proton-driven self-assembly of linear supramolecular oligomers based on amino-calix[5]arene building blocks. , 2007, Chemistry.

[75]  M. Maskos,et al.  Hockeypuck‐Micellen aus Oligo(p‐benzamid)‐b‐PEG‐Stab‐Knäuel‐Blockcopolymeren , 2006 .

[76]  V. Böhmer Calixarene – Makrocyclen mit (fast) unbegrenzten Möglichkeiten , 1995 .

[77]  J. Rebek,et al.  Polycaps: reversibly formed polymeric capsules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Jean‐François Morin,et al.  Recent Advances in the Synthesis of Ammonium-Based Rotaxanes , 2010, Molecules.

[79]  E. Dalcanale,et al.  Host-guest driven self-assembly of linear and star supramolecular polymers. , 2008, Angewandte Chemie.

[80]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[81]  V. Böhmer,et al.  Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[82]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[83]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[84]  U. Schubert,et al.  Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures. , 2008, Chemical communications.

[85]  Feihe Huang,et al.  Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. , 2010, Angewandte Chemie.

[86]  A. Kaifer,et al.  Cucurbituril and Cyclodextrin Complexes of Dendrimers , 2009 .

[87]  Urs Rauwald,et al.  Supramolekulare Blockcopolymere mit Cucurbit[8]uril in Wasser , 2008 .

[88]  H. Gibson,et al.  Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties , 1999 .