Valiant's Holant Theorem and Matchgate Tensors

We propose matchgate tensors as a natural and proper language to develop Valiant’s new theory of Holographic Algorithms. We give a treatment of the central theorem in this theory—the Holant Theorem—in terms of matchgate tensors. Some generalizations are presented.

[1]  Leslie G. Valiant,et al.  Holographic Circuits , 2005, ICALP.

[2]  Leslie G. Valiant,et al.  Completeness for Parity Problems , 2005, COCOON.

[3]  Jin-Yi Cai,et al.  Some Results on Matchgates and Holographic Algorithms , 2007, Int. J. Softw. Informatics.

[4]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[5]  Leslie G. Valiant,et al.  Negation can be exponentially powerful , 1979, Theor. Comput. Sci..

[6]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[7]  Jin-Yi Cai,et al.  On Symmetric Signatures in Holographic Algorithms , 2007, STACS.

[8]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Computational Complexity Conference.

[9]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[10]  V. Strassen Gaussian elimination is not optimal , 1969 .

[11]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[12]  Leslie G. Valiant Expressiveness of matchgates , 2002, Theor. Comput. Sci..

[13]  G. Sposito,et al.  Graph theory and theoretical physics , 1969 .

[14]  Leslie G. Valiant,et al.  Accidental Algorithms , 2006, FOCS.

[15]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[16]  Mark Jerrum,et al.  Some Exact Complexity Results for Straight-Line Computations over Semirings , 1982, JACM.

[17]  P. Dienes,et al.  On tensor geometry , 1926 .

[18]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[19]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[20]  Jin-Yi Cai,et al.  Bases Collapse in Holographic Algorithms , 2007, Computational Complexity Conference.

[21]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[22]  Jin-Yi Cai,et al.  Holographic Algorithms: The Power of Dimensionality Resolved , 2007, ICALP.