Temporal logic control of discrete-time piecewise affine systems

We consider the problem of controlling a discrete-time piecewise affine (PWA) system from a specification given as a Linear Temporal Logic (LTL) formula over linear predicates in its state variables. We present a computational framework for finding initial states and feedback control strategies guaranteeing the satisfaction of such a specification by all the trajectories of the closed loop system. Our solution is based on abstracting the system to a finite transition system and on controlling the abstraction from an LTL specification.

[1]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[2]  E. Allen Emerson,et al.  Automata, Tableaux and Temporal Logics (Extended Abstract) , 1985, Logic of Programs.

[3]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[4]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[5]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[6]  Doron A. Peled,et al.  Stutter-Invariant Temporal Properties are Expressible Without the Next-Time Operator , 1997, Inf. Process. Lett..

[7]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[8]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[9]  Wolfgang Thomas,et al.  Infinite Games and Verification (Extended Abstract of a Tutorial) , 2002, CAV.

[10]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[11]  Marco Pistore,et al.  Nusmv version 2: an opensource tool for symbolic model checking , 2002, CAV 2002.

[12]  Ashish Tiwari,et al.  Series of Abstractions for Hybrid Automata , 2002, HSCC.

[13]  Dimitrie O. Paun,et al.  On Closure Under Stuttering , 2003, Formal Aspects of Computing.

[14]  Paul Gastin,et al.  LTL with Past and Two-Way Very-Weak Alternating Automata , 2003, MFCS.

[15]  Alberto Policriti,et al.  Foundations of a Query and Simulation System for the Modeling of Biochemical and Biological Processes , 2003, Pacific Symposium on Biocomputing.

[16]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[17]  Roberto Sebastiani,et al.  "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.

[18]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[19]  K.J. Kyriakopoulos,et al.  Automatic synthesis of multi-agent motion tasks based on LTL specifications , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[20]  Nicolas Markey,et al.  Non-deterministic Temporal Logics for General Flow Systems , 2004, HSCC.

[21]  Radu Mateescu,et al.  Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli , 2005, ISMB.

[22]  W. P. M. H. Heemels,et al.  Comparison of Four Procedures for the Identification of Hybrid Systems , 2005, HSCC.

[23]  Florian Horn Streett Games on Finite Graphs , 2005 .

[24]  George J. Pappas,et al.  Hybrid Controllers for Path Planning: A Temporal Logic Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[25]  Christel Baier,et al.  Experiments with deterministic omega-automata for formulas of linear temporal logic , 2006, Theor. Comput. Sci..

[26]  Shengbing Jiang,et al.  2080 SHENGBING JIANG AND RATNESH KUMAR , 2006 .

[27]  Didier Dumur,et al.  Robust Model predictive control for piecewise Affine Systems subject to Bounded disturbances , 2006, ADHS.

[28]  Amir Pnueli,et al.  Faster Solutions of Rabin and Streett Games , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[29]  Paulo Tabuada,et al.  Linear Time Logic Control of Discrete-Time Linear Systems , 2006, IEEE Transactions on Automatic Control.

[30]  R. Kumar,et al.  Quotient-based Control Synthesis for Non-Deterministic Plants with Mu-Calculus Specifications , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[31]  Amir Pnueli,et al.  Synthesis of Reactive(1) Designs , 2006, VMCAI.

[32]  C. Belta,et al.  Model checking discrete-time Piecewise Affine systems: Application to gene networks , 2007, 2007 European Control Conference (ECC).

[33]  Antonio Bicchi,et al.  Symbolic planning and control of robot motion [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[34]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.

[35]  Hadas Kress-Gazit,et al.  Courteous Cars , 2008, IEEE Robotics & Automation Magazine.

[36]  Calin Belta,et al.  Temporal Logic Analysis of Gene Networks Under Parameter Uncertainty , 2008, IEEE Transactions on Automatic Control.

[37]  Christel Baier,et al.  Principles of model checking , 2008 .

[38]  Ricardo G. Sanfelice,et al.  Optimal control of Mixed Logical Dynamical systems with Linear Temporal Logic specifications , 2008, 2008 47th IEEE Conference on Decision and Control.

[39]  Calin Belta,et al.  Parameter Synthesis for Piecewise Affine Systems from Temporal Logic Specifications , 2008, HSCC.

[40]  Sumit Kumar Jha,et al.  A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata , 2008, HSCC.

[41]  Calin Belta,et al.  Dealing with Nondeterminism in Symbolic Control , 2008, HSCC.

[42]  Joseph Sifakis,et al.  Model checking , 1996, Handbook of Automated Reasoning.

[43]  Calin Belta,et al.  A symbolic approach to controlling piecewise affine systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[44]  Manuel Mazo,et al.  PESSOA: A Tool for Embedded Controller Synthesis , 2010, CAV.

[45]  Calin Belta,et al.  Formal Analysis of Discrete-Time Piecewise Affine Systems , 2010, IEEE Transactions on Automatic Control.