Iterative Design of L_p Digital Filters

The design of digital filters is a fundamental process in the context of digital signal processing. The purpose of this paper is to study the use of $\lp$ norms (for $2 < p < \infty$) as design criteria for digital filters, and to introduce a set of algorithms for the design of Finite (FIR) and Infinite (IIR) Impulse Response digital filters based on the Iterative Reweighted Least Squares (IRLS) algorithm. The proposed algorithms rely on the idea of breaking the $\lp$ filter design problem into a sequence of approximations rather than solving the original $\lp$ problem directly. It is shown that one can efficiently design filters that arbitrarily approximate a desired $\lp$ solution (for $2 < p < \infty$) including the commonly used $l_\infty$ (or minimax) design problem. A method to design filters with different norms in different bands is presented (allowing the user for better control of the signal and noise behavior per band). Among the main contributions of this work is a method for the design of {\it magnitude} $\lp$ IIR filters. Experimental results show that the algorithms in this work are robust and efficient, improving over traditional off-the-shelf optimization tools. The group of proposed algorithms form a flexible collection that offers robustness and efficiency for a wide variety of digital filter design applications.

[1]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[2]  Elwood T. Olsen,et al.  L1 and L∞ minimization via a variant of Karmarkar's algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[3]  J. L. Sullivan,et al.  Peak-constrained least-squares optimization , 1998, IEEE Trans. Signal Process..

[4]  POLYNOMIALS OF BEST APPROXIMATION ON AN INTERVAL. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[6]  Stephen P. Boyd,et al.  FIR Filter Design via Spectral Factorization and Convex Optimization , 1999 .

[7]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[8]  Jennifer Adams,et al.  FIR digital filters with least-squares stopbands subject to peak-gain constraints , 1991 .

[9]  F. H. Jackson q-Difference Equations , 1910 .

[10]  J. Rice,et al.  The Lawson algorithm and extensions , 1968 .

[11]  R. Fletcher,et al.  The Calculation of Linear Best L_p Approximations , 1971, Comput. J..

[12]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[13]  E. M. Elsayed,et al.  DIFFERENCE EQUATIONS , 2001 .

[14]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[15]  L. Karlovitz,et al.  Construction of nearest points in the Lp, p even, and L∞ norms. I , 1970 .

[16]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[17]  G. Jullien,et al.  Computational techniques for least-square design of recursive digital filters , 1978 .

[18]  A. Deczky Synthesis of recursive digital filters using the minimum p-error criterion , 1972 .

[19]  Christopher T. H. Baker,et al.  The Numerical solution of nonlinear problems , 1981 .

[20]  W. Tranter,et al.  Signals and Systems: Continuous and Discrete , 1983 .

[21]  Curtis F. Gerald,et al.  APPLIED NUMERICAL ANALYSIS , 1972, The Mathematical Gazette.

[22]  Ramdas Kumaresan,et al.  Identification of rational transfer function from frequency response sample , 1990 .

[23]  C. Sidney Burrus,et al.  Constrained least square design of FIR filters without specified transition bands , 1996, IEEE Trans. Signal Process..

[24]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[25]  Jose Antonio Barreto L(p)-approximation by the iteratively reweighted least squares method and the design of digital FIR filters in one dimension , 1993 .

[26]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[27]  H. Fan,et al.  On 'global convergence' of Steiglitz-McBride adaptive algorithm , 1993 .

[28]  Leonard Weiss,et al.  Prony’s Method, Z-Transforms, and Padé Approximation , 1963 .

[29]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[30]  C. Sidney Burrus,et al.  Adaptive iterative reweighted least squares design of L/sub p/ FIR filters , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[31]  Aden D. Jervis Computer aided design of recursive digital filters , 2008 .

[32]  J. L. Walsh,et al.  Polynomials of best approximation on a real finite point set. I , 1959 .

[33]  T. Motzkin,et al.  POLYNOMIALS OF BEST APPROXIMATION ON AN INTERVAL. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[34]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[35]  H. Padé Sur la représentation approchée d'une fonction par des fractions rationnelles , 1892 .

[36]  Andreas Antoniou,et al.  Digital Filters: Analysis, Design and Applications , 1979 .

[37]  S. W. Kahng Best _{} approximation , 1972 .

[38]  E. P. Cunningham,et al.  Digital Filtering: An Introduction , 1992 .

[39]  L. Goddard Approximation of Functions , 1965, Nature.

[40]  C. Sidney Burrus,et al.  Constrained least squares design of 2-D FIR filters , 1996, IEEE Trans. Signal Process..

[41]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[42]  S. Sidney Burrus Computer-Based Exercises for Signal Processing Using MATLAB , 1993 .

[43]  J. T. Spanos,et al.  Newton algorithm for fitting transfer functions to frequency response measurements , 1993 .

[44]  C. Sidney Burrus,et al.  Iterative reweighted least-squares design of FIR filters , 1994, IEEE Trans. Signal Process..

[45]  C. Sidney Burrus,et al.  A modified algorithm for constrained least square design of multiband FIR filters without specified transition bands , 1998, IEEE Trans. Signal Process..

[46]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[47]  A. W. Soewito,et al.  Least square digital filter design in the frequency domain , 1991 .

[48]  E. Cheney Introduction to approximation theory , 1966 .

[49]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[50]  Leland B. Jackson Frequency-domain Steiglitz-McBride method for least-squares IIR filter design, ARMA modeling, and periodogram smoothing , 2008, IEEE Signal Processing Letters.

[51]  Kenneth Steiglitz,et al.  Time-Domain Approximation by Iterative Methods , 1966 .

[52]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[53]  T. Söderström,et al.  The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .

[54]  R. Bellman,et al.  Quasilinearization and nonlinear boundary-value problems , 1966 .

[55]  James H. McClellan,et al.  Exact equivalence of the Steiglitz-McBride iteration and IQML , 1991, IEEE Trans. Signal Process..

[56]  C. S. Burrus,et al.  Least p-power error design of FIR filters , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[57]  Ramdas Kumaresan,et al.  Fitting a pole-zero filter model to arbitrary frequency response samples , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.