Automated volumetric model construction and dynamic segmentation of the heart ventricles in tagged mri

Cardiovascular disease is the leading cause of death for men and women in most developed countries, however tagged MRI (tMRI) may facilitate patient diagnosis and treatment planning and thereby lower morbidity. The imaging technique provides in vivo measurement of regional heterogeneity of the myocardium's contraction when the epicardial and endocardial surfaces and tag sheets are segmented. Since the adoption of tMRI has previously been hindered by lengthy analysis time for the epicardial and endocardial surfaces, we have developed a fully automated system which constructs a biventricular model of the heart and dynamically segments the ventricles throughout systole. After acquiring tMRI of our volunteers, we correct surface coil-induced intensity inhomogeneity using a scale based approach. We improve noise suppression by combining inhomogeneity correction and anisotropic diffusion. To extract 2D motion in each image, we apply an approach (called GAMA) based on banks of Gabor filters. We then extract ventricle surface features using statically adaptive, gray scale morphology. From the features, we construct a biventricular patient-specific model of the heart directly from the image data, which provides internal regularization forces. Then we derive 3D model forces from the 2D features and fit the model by balancing forces. We have found excellent agreement between our fitted models and expert delineations and our system replaces the 4 to 17 hours of interactive segmentation with just 1.75 hours of CPU time and it simultaneously fits a biventricular model throughout systole. Our MRI noise suppression is significantly better than previous methods and GAMA recovers all tag information including tag orientation and spacing. Our deformable model approach yields constraints between those of a model-from-data approach and parameter function/statistical modeling approaches and is suitable for processing steady state free precession images and 3D images. Our methods may be used for clinical applications including ventricular hypertrophy, myocardial infarcts, breathing disorders and speech impediments, or used for research applications including brain trauma, genetically engineered mouse hearts, blood flow analysis, and geometric statistical model construction.

[1]  Dimitris N. Metaxas,et al.  Automated Segmentation of the Left and Right Ventricles in 4D Cardiac SPAMM Images , 2002, MICCAI.

[2]  Jae S. Lim,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[3]  Dimitris N. Metaxas,et al.  Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI , 2000, Medical Image Anal..

[4]  J. Gore,et al.  MR Physics-Based Snake Tracking and Dense Deformations from Tagged Cardiac Images , 1994 .

[5]  Elliot R. McVeigh,et al.  Analysis and Visualization of Cardiac Function from MR Images , 1997 .

[6]  J. Kender,et al.  Nonparametric training of snakes to find indistinct boundaries , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[7]  Hui Luo,et al.  A 3D Statistical Shape Model for the Left Ventricle of the Heart , 2001, MICCAI.

[8]  Dimitris N. Metaxas,et al.  A Finite Element Model for Functional Analysis of 4D Cardiac-Tagged MR Images , 2003, MICCAI.

[9]  Alistair A. Young,et al.  Semi-automatic tracking of myocardial motion in MR tagged images , 1995, IEEE Trans. Medical Imaging.

[10]  Dimitris N. Metaxas,et al.  Heart Composite Material Model for Stress-Strain Analysis , 2003 .

[11]  Jayaram K. Udupa,et al.  New variants of a method of MRI scale standardization , 2000, IEEE Transactions on Medical Imaging.

[12]  Amir A. Amini,et al.  A MAP framework for tag line detection in SPAMM data using Markov random fields on the B-spline solid , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[13]  Jerry L. Prince,et al.  A PDE approach for measuring tissue thickness , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[14]  Jayaram K. Udupa,et al.  Scale-based method for correcting background intensity variation in acquired images , 2002, SPIE Medical Imaging.

[15]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[16]  Ian McConnell,et al.  Comparison of annealing and iterated filters for speckle reduction in SAR , 1996, Remote Sensing.

[17]  Jerry L. Prince,et al.  Imaging heart motion using harmonic phase MRI , 2000, IEEE Transactions on Medical Imaging.

[18]  L. Axel,et al.  Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. , 1989, Radiology.

[19]  Dimitris N. Metaxas,et al.  Patient-Specific Analysis of Left Ventricular Blood Flow , 1998, MICCAI.

[20]  Milan Sonka,et al.  Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images , 2001, IEEE Transactions on Medical Imaging.

[21]  EX Wu,et al.  Spatial Modulation of Magnetization for Cardiac Tagging Using Sinc Modulated RF Pulse Train , 2001 .

[22]  Duane C. Hanselman,et al.  Mastering MATLAB 5: A Comprehensive Tutorial and Reference , 1995 .

[23]  Dwight Barkley,et al.  Fast Simulations of Waves in Three-Dimensional Excitable Media , 1997 .

[24]  H. Delingette,et al.  Spatial and Temporal Shape Constrained Deformable Surfaces for 3D and 4D Medical Image Segmentation , 2000 .

[25]  X. Deng,et al.  Rapid 3D LV Strain Reconstruction from Tagged Cardiac MR Images , 2002 .

[26]  Harry G. Schaeffer,et al.  Finite elements: Their design and performance , 1995 .

[27]  Amir A. Amini,et al.  Spatio-temporal tracking of myocardial deformations with a 4-D B-spline model from tagged MRI , 1999, IEEE Transactions on Medical Imaging.

[28]  Jerry L. Prince,et al.  Angle images for measuring heart motion from tagged MRI , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[29]  Leon Axel,et al.  Extracting tissue deformation using Gabor filter banks , 2004, SPIE Medical Imaging.

[30]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[31]  I. Haber Three-dimensional motion reconstruction and analysis of the right ventricle from planar tagged MRI , 2000 .

[32]  W. Eric L. Grimson,et al.  Model-based curve evolution technique for image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[34]  Robert T. Schultz,et al.  Volumetric layer segmentation using coupled surfaces propagation , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[35]  Alan C. Bovik,et al.  Analysis of multichannel narrow-band filters for image texture segmentation , 1991, IEEE Trans. Signal Process..

[36]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[37]  Nicholas Ayache,et al.  Use of a 4D planispheric transformation for the tracking and analysis of LV motion with tagged MR images , 1999, Medical Imaging.

[38]  Jerry L Prince,et al.  Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[39]  A. Young,et al.  Three‐Dimensional Left Ventricular Deformation in Hypertrophic Cardiomyopathy , 1994, Circulation.

[40]  J. S. Dowker,et al.  Fundamentals of Physics , 1970, Nature.

[41]  Petia Radeva,et al.  Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces , 2001, IEEE Transactions on Medical Imaging.

[42]  James S. Duncan,et al.  The Active Elastic Model , 2001, IPMI.

[43]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[44]  Carolyn A. Bucholtz,et al.  Shape-based interpolation , 1992, IEEE Computer Graphics and Applications.

[45]  A. Montillo,et al.  Use of Bandpass Gabor Filters for Enhancing Blood-Myocardium Contrast and Filling-in tags in tagged MR Images , 2004 .

[46]  E. McVeigh,et al.  Myocardial tagging with SSFP , 2003, Magnetic resonance in medicine.

[47]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[48]  E. McVeigh,et al.  Tag contrast in breath‐hold CINE cardiac MRI , 1994, Magnetic resonance in medicine.

[49]  Jerry L. Prince,et al.  Measurement of Cardiac Deformations from MRI: Physical and Mathematical Models , 2001, Computational Imaging and Vision.

[50]  S. Maier,et al.  Improved myocardial tagging contrast , 1993, Magnetic resonance in medicine.

[51]  Xiao Han,et al.  Topology Preserving Geometric Deformable Models for Brain Reconstruction , 2003 .

[52]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[53]  J. Sijbers,et al.  Signal and noise estimation from magnetic resonance images , 1998 .

[54]  Sinan Batman,et al.  Morphological Methods for Biomedical Image Analysis , 2000 .

[55]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[56]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[57]  Alistair A. Young,et al.  Tracking and finite element analysis of stripe deformation in magnetic resonance tagging , 1995, IEEE Trans. Medical Imaging.

[58]  C. Peskin,et al.  Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity , 2001 .

[59]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[60]  Jerry L Prince,et al.  Quantitative Ischemia Detection During Cardiac Magnetic Resonance Stress Testing by Use of FastHARP , 2003, Circulation.

[61]  Thomas S. Denney,et al.  Estimation and detection of myocardial tags in MR image without user-defined myocardial contours , 1999, IEEE Transactions on Medical Imaging.

[62]  Marie-Pierre Jolly,et al.  Combining Edge, Region, and Shape Information to Segment the Left Ventricle in Cardiac MR Images , 2001, MICCAI.

[63]  Thomas S. Denney,et al.  Identification of Myocardial Tags in Tagged MR Images Without Prior Knowledge of Myocardial Contours , 1997, IPMI.

[64]  Dmitry B. Goldgof,et al.  Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images , 1994, IEEE Trans. Medical Imaging.

[65]  Jerry L. Prince,et al.  Motion estimation from tagged MR image sequences , 1992, IEEE Trans. Medical Imaging.

[66]  Ioannis Pitas,et al.  Binary morphological shape-based interpolation applied to 3-D tooth reconstruction , 2002, IEEE Transactions on Medical Imaging.

[67]  A. Young,et al.  Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization--a model-based approach. , 1992, Radiology.

[68]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[69]  W. Gibby,et al.  MR contrast agents: an overview. , 1988, Radiologic clinics of North America.

[70]  Leon Axel,et al.  Validation of an optical flow method for tag displacement estimation , 1999, IEEE Transactions on Medical Imaging.

[71]  W G O'Dell,et al.  Imaging three-dimensional cardiac function. , 2000, Annual review of biomedical engineering.

[72]  Jerry L Prince,et al.  Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. , 2000, Circulation.

[73]  A. Montillo Shape Priors in Medical Image Analysis: Extensions of the Level Set Method , 2000 .

[74]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[76]  Kevin F. Augenstein,et al.  Finite Element Modeling for Three-Dimensional Motion Reconstruction and Analysis , 2001 .

[77]  Dimitris N. Metaxas Physics-Based Deformable Models: Applications to Computer Vision, Graphics, and Medical Imaging , 1996 .

[78]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[79]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[80]  Thomas S. Denney,et al.  Model-free reconstruction of 3-D myocardial strain from planar tagged MR images: precision and spatial resolution , 1997, Proceedings of the 1997 16 Southern Biomedical Engineering Conference.

[81]  Jerry L. Prince,et al.  A PDE Approach for Thickness, Correspondence, and Gridding of Annular Tissues , 2002, ECCV.

[82]  Franc Solina,et al.  Segmentation and Recovery of Superquadrics , 2000, Computational Imaging and Vision.

[83]  Jerry L. Prince,et al.  Image processing and analysis in tagged cardiac MRI , 2000 .

[84]  Jinah Park,et al.  Deformable models with parameter functions for cardiac motion analysis from tagged MRI data , 1996, IEEE Trans. Medical Imaging.

[85]  G J Kemerink,et al.  Improving contrast and tracking of tags in cardiac magnetic resonance images , 1999, Magnetic resonance in medicine.

[86]  Jerry L Prince,et al.  Magnitude image CSPAMM reconstruction (MICSR) , 2003, Magnetic resonance in medicine.

[87]  Peter Boesiger,et al.  Myocardial tagging with 3D‐CSPAMM , 2002, Journal of magnetic resonance imaging : JMRI.

[88]  Alistair A. Young,et al.  Model Tags: Direct 3D Tracking of Heart Wall Motion from Tagged Magnetic Resonance Images , 1998, MICCAI.

[89]  Jerry L. Prince,et al.  On the design of the bandpass filters in harmonic phase MRI , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[90]  J. Zwanenburg,et al.  Steady‐state free precession with myocardial tagging: CSPAMM in a single breathhold , 2003, Magnetic resonance in medicine.

[91]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[92]  Jerry L. Prince,et al.  Cardiac material markers from tagged MR images , 1998, Medical Image Anal..

[93]  Dimitris N. Metaxas,et al.  Segmenting cardiac MRI tagging lines using Gabor filter banks , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[94]  Ioannis Pitas,et al.  Shape-based interpolation of binary 3-D images using morphological skeletonization , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[95]  Jayaram K. Udupa,et al.  Interaction between noise suppression and inhomogeneity correction in MRI , 2003, SPIE Medical Imaging.

[96]  Elliot R. McVeigh,et al.  Four-dimensional B-spline-based motion analysis of tagged cardiac MR images , 1999, Medical Imaging.

[97]  R. Bajcsy,et al.  Evaluation of Elastic Matching System for Anatomic (CT, MR) and Functional (PET) Cerebral Images , 1989, Journal of computer assisted tomography.

[98]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[99]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  John S. Duncan,et al.  Shape-based 4D left ventricular myocardial function analysis , 1994, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[101]  Petia Radeva,et al.  Deformable B-Solids and Implicit Snakes for 3D Localization and Tracking of SPAMM MRI Data , 1997, Comput. Vis. Image Underst..

[102]  S. Nelson,et al.  Surface coil MR imaging of the human brain with an analytic reception profile correction , 1995, Journal of magnetic resonance imaging : JMRI.

[103]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[104]  Jerry L. Prince,et al.  Optimal brightness functions for optical flow estimation of deformable motion , 1994, IEEE Trans. Image Process..

[105]  Jerry L Prince,et al.  Imaging longitudinal cardiac strain on short‐axis images using strain‐encoded MRI , 2001, Magnetic resonance in medicine.

[106]  J. Udupa,et al.  Shape-based interpolation of multidimensional objects. , 1990, IEEE transactions on medical imaging.

[107]  L. Axel,et al.  Intensity correction in surface-coil MR imaging. , 1987, AJR. American journal of roentgenology.

[108]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[109]  Amir A. Amini,et al.  Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI , 1998, IEEE Transactions on Medical Imaging.

[110]  Carl-Fredrik Westin,et al.  Phase-Driven Finite Element Model for Spatio-temporal Tracking in Cardiac Tagged MRI , 2001, MICCAI.

[111]  Jerry L. Prince,et al.  Tag and contour detection in tagged MR images of the left ventricle , 1994, IEEE Trans. Medical Imaging.

[112]  A. Young,et al.  Right ventricular midwall surface motion and deformation using magnetic resonance tagging. , 1996, The American journal of physiology.

[113]  Alejandro F. Frangi,et al.  Three-dimensional model-based analysis of vascular and cardiac images , 2001 .

[114]  Dimitris N. Metaxas,et al.  In vivo strain and stress estimation of the heart left and right ventricles from MRI images , 2003, Medical Image Anal..

[115]  E Berry,et al.  Simulation of two‐dimensional tagged MRI , 1997, Journal of magnetic resonance imaging : JMRI.