Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

[1]  V. Shirodkar,et al.  Change in crystallinity of poly(vinylidene fluoride) due to thermal evaporation , 1997 .

[2]  T. Hattori,et al.  Improved piezoelectricity in thick lamellar β‐form crystals of poly(vinylidene fluoride) crystallized under high pressure , 1996 .

[3]  B. Suman,et al.  Fluid flow stability analysis of multilayer fiber drawing , 2010 .

[4]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[5]  S. Ando,et al.  Crystalline structure and molecular mobility of PVDF chains in PVDF/PMMA blend films analyzed by solid-state 19 F MAS NMR spectroscopy , 2012 .

[6]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[7]  Mecit Yaman,et al.  Structural coloring in large scale core-shell nanowires. , 2011, Nano letters.

[8]  Szu-Hung Chen,et al.  Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss , 2012 .

[9]  Elton J. Cairns,et al.  Characterization of Electrospun PVdF Fiber-Based Polymer Electrolytes , 2007 .

[10]  P. Vuoristo,et al.  Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings , 2004 .

[11]  M. Bayindir,et al.  Macroscopic assembly of indefinitely long and parallel nanowires into large area photodetection circuitry. , 2012, Nano letters.

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[14]  Rong-Fong Fung,et al.  Precision position control using combined piezo-VCM actuators , 2005 .

[15]  D. Ielmini,et al.  Self-aligned nanotube-nanowire phase change memory. , 2013, Nano letters.

[16]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[17]  P. Blom,et al.  Ferroelectric Phase Diagram of PVDF:PMMA , 2012 .

[18]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[19]  Mengyuan Li,et al.  Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. , 2013, Nature materials.

[20]  P. Blom,et al.  Low voltage switching of a spin cast ferroelectric polymer , 2004 .

[21]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[22]  Ali Akbar Yousefi,et al.  Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films , 2007 .

[23]  C. Mijangos,et al.  Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[25]  T. Bein,et al.  Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires , 2012 .

[26]  J D Joannopoulos,et al.  Multimaterial piezoelectric fibres. , 2010, Nature materials.

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[29]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[30]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[31]  A. Jonas,et al.  Nanoscale control of polymer crystallization by nanoimprint lithography. , 2005, Nano letters.

[32]  Hiroshi Tanaka,et al.  Piezoelectricity of Poly (vinylidene Fluoride) under High Pressure , 1982 .

[33]  M. García-Gutiérrez,et al.  Confinement-induced one-dimensional ferroelectric polymer arrays. , 2010, Nano letters.

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  T. A. Hatton,et al.  Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber , 2011 .

[36]  Amit Kumar,et al.  Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition , 2012 .

[37]  A M Minor,et al.  Large field-induced strains in a lead-free piezoelectric material. , 2011, Nature Nanotechnology.

[38]  Xiaojun Yan,et al.  Piezoelectric actuation of direct-write electrospun fibers , 2010 .

[39]  A. Takahara,et al.  Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers. , 2009, ACS nano.

[40]  Ayman F. Abouraddy,et al.  Metal–insulator–semiconductor optoelectronic fibres , 2004, Nature.

[41]  Michael J. Berry,et al.  Piezoelectric nanoribbons for monitoring cellular deformations. , 2012, Nature nanotechnology.

[42]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[43]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[44]  R. Gregorio Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions , 2006 .

[45]  M. Wegener Polarization-electric field hysteresis of ferroelectric PVDF films: comparison of different measurement regimes. , 2008, The Review of scientific instruments.

[46]  Y. Chen,et al.  Fabrication of PZT BY sol-gel method , 2010, Proceedings of the 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications.

[47]  K. No,et al.  Fabrication of Vertically Well‐Aligned P(VDF‐TrFE) Nanorod Arrays , 2012, Advanced materials.

[48]  S. Lanceros‐Méndez,et al.  Nucleation of the Electroactive γ Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites , 2011 .

[49]  P. Cebe,et al.  Effect of nanoclay on relaxation of poly(vinylidene fluoride) nanocomposites , 2009 .

[50]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[53]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[55]  Youn Jung Park,et al.  Localized Pressure‐Induced Ferroelectric Pattern Arrays of Semicrystalline Poly(vinylidene fluoride) by Microimprinting , 2007 .

[56]  Mecit Yaman,et al.  Arrays of indefinitely long uniform nanowires and nanotubes. , 2011, Nature materials.