Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons

[1]  D. R. Curtis,et al.  GABA, Bicuculline and Central Inhibition , 1970, Nature.

[2]  J. Kehoe,et al.  The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia , 1972, The Journal of physiology.

[3]  H. Fibiger,et al.  On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. , 1973, Brain research.

[4]  K. Krnjević,et al.  Chemical Nature of Synaptic Transmission in Vertebrates , 1974 .

[5]  J. Waddington,et al.  Neurochemical changes following kainic acid lesions of the nucleus accumbens: implications for a GABAergic accumbal-ventral tegmental pathway. , 1978, Life sciences.

[6]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[7]  F. Fonnum,et al.  Biochemical evidence for γ-aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat , 1980, Neuroscience.

[8]  R. Thalmann,et al.  Biphasic response of hippocampal pyramidal neurons to GABA , 1981, Neuroscience Letters.

[9]  N. Bowery,et al.  3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain , 1981, Nature.

[10]  D. Weinreich,et al.  On the nature of histamine‐mediated slow hyperpolarizing synaptic potentials in identified molluscan neurones , 1982, The Journal of physiology.

[11]  B. Alger Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro. , 1984, Journal of neurophysiology.

[12]  R. Nicoll,et al.  Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells , 1984, Nature.

[13]  R. Nicoll,et al.  Comparison of the action of baclofen with gamma‐aminobutyric acid on rat hippocampal pyramidal cells in vitro. , 1985, The Journal of physiology.

[14]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[15]  W. Nauta,et al.  Efferent connections of the ventral pallidum: Evidence of a dual striato pallidofugal pathway , 1985, The Journal of comparative neurology.

[16]  A. McDonald,et al.  Immunohistochemical identification of γ-aminobutyric acid-containing neurons in the rat basolateral amygdala , 1985, Neuroscience Letters.

[17]  R. Nicoll,et al.  A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. , 1986, Science.

[18]  P. Seeburg,et al.  Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family , 1987, Nature.

[19]  J. Lacaille,et al.  Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[21]  R H Thalmann,et al.  Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTP gamma S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  L. Haberly,et al.  Characterization of synaptically mediated fast and slow inhibitory processes in piriform cortex in an in vitro slice preparation. , 1988, Journal of neurophysiology.

[23]  J. Lacaille,et al.  Ultrastructure of stratum lacunosum moleculare interneurons of hippocampal CA1 region , 1988, Synapse.

[24]  M. Pirchio,et al.  Cl‐ ‐ and K+‐dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. , 1988, The Journal of physiology.

[25]  M. Joëls,et al.  Actions of serotonin recorded intracellularly in rat dorsal lateral septal neurons , 1988, Synapse.

[26]  P. Calabresi,et al.  Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording , 1989, British journal of pharmacology.

[27]  J. Williams,et al.  GABA- and glutamate-mediated synaptic potentials in rat dorsal raphe neurons in vitro. , 1989, Journal of neurophysiology.

[28]  J. Pearson,et al.  Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala , 1989, Neuroscience Letters.

[29]  M. Segal,et al.  Serotonin attenuates a slow inhibitory postsynaptic potential in rat hippocampal neurons , 1990, Neuroscience.

[30]  R. Nicoll,et al.  Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. , 1990, Physiological reviews.

[31]  Vincenzo Crunelli,et al.  A role for GABAB receptors in excitation and inhibition of thalamocortical cells , 1991, Trends in Neurosciences.

[32]  R. North,et al.  Distinct muscarinic receptors inhibit release of gamma-aminobutyric acid and excitatory amino acids in mammalian brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.