Multi-Resonator-Assisted Multi-Qubit Resetting in a Network

We propose a quantum bath engineering method for the initialization of arbitrary number of flux-tunable transmon qubits with a multi-resonator circuit quantum electrodynamics (QED) architecture. Through the application of the microwave drives, we can prepare any number of qubits distributed among the network into arbitrary initial states (on the Bloch sphere surface). Taking into account the practically experimental parameters, we verify that the initialization process could be achieved in $1 \mu s$ with the fidelity in excess of 99\%. Moreover, due to the special structure of the circuit network, the initialization efficiency is independent on the number of (ideal, provided) qubits, as only a definite number of bosonic modes are involved in despite of the increasing number of the qubits to be initialized.

[1]  Lituo Shen,et al.  Resonator-assisted quantum bath engineering of a flux qubit , 2014, 1407.3337.

[2]  P. Bertet,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[3]  Philip Reinhold,et al.  High-contrast qubit interactions using multimode cavity QED. , 2014, Physical review letters.

[4]  D. Cory,et al.  Cavity cooling of an ensemble spin system. , 2013, Physical review letters.

[5]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[6]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[7]  M Mirrahimi,et al.  Demonstrating a driven reset protocol for a superconducting qubit. , 2012, Physical review letters.

[8]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[9]  S. Girvin,et al.  Cavity-assisted quantum bath engineering. , 2012, Physical review letters.

[10]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[11]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[12]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[13]  P. Rabl,et al.  Photon condensation in circuit quantum electrodynamics by engineered dissipation , 2012, 1201.3388.

[14]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[15]  S. Girvin,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[16]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[17]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[18]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[19]  D. Stamper-Kurn,et al.  Spin optodynamics analog of cavity optomechanics , 2010, 1005.3853.

[20]  S. Miyashita,et al.  Magnetic strong coupling in a spin-photon system and transition to classical regime , 2010, 1004.3605.

[21]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[22]  I. Chuang,et al.  Cavity sideband cooling of a single trapped ion. , 2009, Physical review letters.

[23]  Michael J. Hartmann,et al.  Quantum many‐body phenomena in coupled cavity arrays , 2008, 0808.2557.

[24]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[25]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[26]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[27]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[28]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[29]  A. Clerk,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[30]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[31]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[32]  G. Rempe,et al.  Cavity cooling of a single atom , 2004, Nature.

[33]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[34]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[35]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[36]  J. F. Poyatos,et al.  Quantum Reservoir Engineering with Laser Cooled Trapped Ions. , 1996, Physical review letters.