Aquifers: the ultimate groundwater-dependent ecosystems

Australian aquifers support diverse metazoan faunas comprising obligate groundwater inhabitants, largely crustaceans but also including insects, worms, gastropods, mites and fish. They typically comprise short-range endemics, often of relictual lineages and sometimes widely vicariant from their closest relatives. They have been confined to subterranean environments from a range of geological eras and may contain information on the deep history of aquifers. Obligate groundwater fauna (stygobites) occurs in the void spaces in karst, alluvial and fractured rock aquifers. They have convergent morphologies (reduction or loss of eyes, pigment, enhanced non-optic senses, vermiform body form) and depend on energy imported from the surface except in special cases of in situ chemoautotrophic energy fixation. In Australia, many stygofaunas in arid areas occur in brackish to saline waters, although they contain taxa from lineages generally restricted to freshwater systems. They may occur alongside species belonging to taxa considered typical of the marine littoral although far removed in space and time from marine influence. The ecological attributes of stygofauna makes them vulnerable to changes in habitat, which, combined with their taxonomic affinities, makes them a significant issue to biodiversity conservation. The interaction of vegetation and groundwater ecosystems is discussed and, in places, there are conservation issues common to both.

[1]  W. V. Sobczak,et al.  12 – Microbial Communities in Hyporheic Sediments , 2000 .

[2]  F. Schram,et al.  Crustaceans and the Biodiversity Crisis , 1999 .

[3]  W. Humphreys,et al.  Thirteen new Dytiscidae lColeopterar of the genera Boongurrus Larsonc Tjirtudessus Watts & Humphreys and Nirripirti Watts and Humphreysc from underground waters in Australia , 2004 .

[4]  J. Notenboom Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea) , 1991 .

[5]  J. Stock Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda) , 1980 .

[6]  I. Karanovic,et al.  Three new genera and nine new species of the subfamily Candoninae (Crustacea, Ostracoda, Podocopida) from the Pilbara region (Western Australia) , 2003 .

[7]  A. L. Buikema,et al.  Effects of Organic Pollution on an Appalachian Cave: Changes in Macroinvertebrate Populations and Food Supplies , 1997 .

[8]  W. Humphreys,et al.  Copepods from ground waters of Western Australiac Vp Phyllopodopsyllus wellsi spp novp lCrustaceac Copepodac Harpacticoidar with a key to world species , 2001 .

[9]  P. Pospisil 13 – The Groundwater Fauna of a Danube Aquifer in The “Lobau” Wetland in Vienna, Austria , 1994 .

[10]  A. Spate,et al.  Stygofauna diversity and distribution in Eastern Australian cave and karst areas , 2001 .

[11]  P. Groom Groundwater-dependency and water relations of four Myrtaceae shrub species during a prolonged summer drought , 2003 .

[12]  W. Williams,et al.  The amphipod (Crustacea) stygofauna of Australia: description of new taxa (Melitidae, Neoniphargidae, Paramelitidae), and a synopsis of known species , 1997 .

[13]  T. Karanovic First representative of the genus Allocyclops Kiefer, 1932 (Crustacea, Copepoda, Cyclopoida) from the Australian subterranean waters , 2003 .

[14]  D. Lovley,et al.  Rates of Microbial Metabolism in Deep Coastal Plain Aquifers , 1990, Applied and environmental microbiology.

[15]  B. Murray,et al.  Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services , 2006 .

[16]  I. Karanovic Towards a Revision of Candoninae (Crustacea : Ostracoda) : Description of Two New Genera from Australian Groundwaters , 2003 .

[17]  Philip K. Groom,et al.  Impact of groundwater abstraction on a Banksia woodland, Swan Coastal Plain, Western Australia , 2000 .

[18]  J. Stanford,et al.  Microbial respiration within a floodplain aquifer of a large gravel‐bed river , 2002 .

[19]  W. Humphreys,et al.  First Record of Spelaeogriphacea From Australasia: a New Genus and Species From an Aquifer in the Arid Pilbara of Western Australia , 1998 .

[20]  W. Moore The subterranean estuary: a reaction zone of ground water and sea water , 1999 .

[21]  A. Camacho Historical biogeography of Hexabathynella, a cosmopolitan genus of groundwater Syncarida (Crustacea, Bathynellacea, Parabathynellidae) , 2003 .

[22]  A. Gebruk,et al.  Ecology and Biogeography of the Hydrothermal Vent Fauna of the Mid-Atlantic Ridge , 1997 .

[23]  G. Wilson A new genus of Tainisopidae fam. nov. (Crustacea: Isopoda) from the Pilbara,Western Australia , 2003 .

[24]  F. Bärlocher,et al.  Hyporheic biofilms — a potential food source for interstitial animals , 1989 .

[25]  W. Humphreys,et al.  Danielopolina kornickeri sp. n. (Ostracoda, Thaumatocypridoidea) from a western Australian anchialine cave: morphology and evolution , 2000 .

[26]  W. Humphreys,et al.  A NEW GENUS OF EPACTERISCID CALANOID COPEPOD FROM AN ANCHIALINE SINKHOLE ON NORTHWESTERN AUSTRALIA , 2001 .

[27]  W. Humphreys,et al.  On the origin and evolution of a new anchialine stygobitic Microceratina species (Crustacea, Ostracoda) from Christmas Island (Indian Ocean) , 2004, Journal of Micropalaeontology.

[28]  A. Vogler,et al.  A highly modified stygobiont diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mitochondrial DNA sequences , 2004 .

[29]  W. Humphreys Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages , 1999 .

[30]  W. Humphreys,et al.  First record of Thermosbaenacea (Crustacea) from the Southern Hemisphere : a new species from a cave in tropical Western Australia , 1992 .

[31]  Thomas C. Winter,et al.  Ground water and surface water a single resource: U , 1998 .

[32]  A. Mccomb,et al.  Root Mats in Ground Water: A Fauna-Rich Cave Habitat , 1996, Journal of the North American Benthological Society.

[33]  G. Wilson,et al.  Ancient endemism among freshwater isopods (Crustacea, Phreatoicidea) , 1999 .

[34]  B. Šket The nature of biodiversity in hypogean waters and how it is endangered , 1999, Biodiversity & Conservation.

[35]  G. D. Watson,et al.  The role of geological structures and relict channels in the development of dryland salinity in the wheatbelt of Western Australia , 1993 .

[36]  J. Ward,et al.  Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options: Round Table 2: Biodiversity in groundwater/surface water ecotones: central questions , 1997 .

[37]  B. Hart,et al.  A review of the salt sensitivity of the Australian freshwater biota , 1991, Hydrobiologia.

[38]  Barbara A. Bekins,et al.  Microbial populations in contaminant plumes , 2000 .

[39]  P. Deckker Australian salt lakes: their history, chemistry, and biota — a review , 1983, Hydrobiologia.

[40]  Philip K. Groom,et al.  Myrtaceous shrub species respond to long-term decreasing groundwater levels on the Gnangara Groundwater Mound, northern Swan Coastal Plain , 2000 .

[41]  A. Gounot 7 – Microbial Ecology of Groundwaters , 1994 .

[42]  W. Williams,et al.  Amphipod (Crustacea) diversity in underground waters in Australia: an Aladdin's cave , 1997 .

[43]  D. Belton,et al.  Quantitative resolution of the debate over antiquity of the central Australian landscape: implications for the tectonic and geomorphic stability of cratonic interiors , 2004 .

[44]  R. Brinkhurst,et al.  Review of the Phreodrilidae (Annelida: Oligochaeta: Tubificida) of Australia , 1997 .

[45]  Danielopol,et al.  Biodiversity in groundwater: a large-scale view. , 2000, Trends in ecology & evolution.

[46]  Botosaneanu Stygofauna Mundi: A Faunistic, Distributional, and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters , 1987 .

[47]  E. F. Benfield,et al.  Leaf and wood breakdown in cave streams , 2001, Journal of the North American Benthological Society.

[48]  P. D. Laurentiis Copepods from ground waters of Western Australia, 11. The genus Halicyclops (Crustacea: Copepoda: Cyclopidae) , 1996 .

[49]  W. Humphreys,et al.  Twenty-five new Dytiscidae lColeopterar of the genera Tjirtudessus Watts & Humphreysc Nirripirti Watts & Humphreys and Bidessodes Regimbart from underground waters in Australia , 2003 .

[50]  D. Danielopol,et al.  Species richness of microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation , 1997 .

[51]  Andrew J. Boulton,et al.  Aquifers and hyporheic zones: Towards an ecological understanding of groundwater , 2005 .

[52]  Water requirements for mesquite (Prosopis juliflora) , 1977 .

[53]  A. Boulton 'Twixt two worlds: taxonomic and functional biodiversity at the surface water/groundwater interface , 2001 .

[54]  B. Šket HIGH BIODIVERSITY IN HYPOGEAN WATERS AND ITS ENDANGERMENT – THE SITUATION IN SLOVENIA, THE DINARIC KARST, AND EUROPE , 1999 .

[55]  Gene E. Likens,et al.  Energy Flow in Bear Brook, New Hampshire: An Integrative Approach to Stream Ecosystem Metabolism , 1973 .

[56]  Robert T. Anderson,et al.  Ecology and Biogeochemistry of in Situ Groundwater Bioremediation , 1997 .

[57]  Nancy B. Grimm,et al.  Vertical Hydrologic Exchange and Ecosystem Metabolism in a Sonoran Desert Stream , 1995 .

[58]  S. Macko,et al.  Food web structure and the role of epilithic biofilms in cave streams , 2003 .

[59]  M. Menichetti,et al.  Geology and Biology of the Frasassi Caves in Central Italy: An Ecological Multi-disciplinary Study of a Hypogenic Underground Ecosystem. , 2000 .

[60]  F. E. Egler Ecosystems of the World , 1960 .

[61]  I. Karanovic A new genus of Candoninae (Crustacea, Ostracoda, Candonidae) from the subterranean waters of southwestern Western Australia , 2003 .

[62]  I. F. Thomas Review of the Genera Pseudosida Herrick, 1884 and Latonopsis Sars, 1888 (Cladocera) , 1961 .

[63]  W. F. Humphreysl,et al.  Food of the blind cave fishes of northwestern Australia , 1995 .

[64]  W. Humphreys,et al.  Imperilled Subsurface Waters in Australia: Biodiversity, Threatening Processes and Conservation , 2003 .

[65]  G. Boxshall,et al.  New stygobiont copepods (Calanoida; Misophrioida) from Bundera Sinkhole, an anchialine cenote in north-western Australia , 2001 .

[66]  L. Deharveng,et al.  Subterranean Ecosystems: A Truncated Functional Biodiversity , 2002 .

[67]  S. Eberhard Subterranean Fauna of Christmas Island, Indian Ocean , 2001 .

[68]  Florian Malard,et al.  Oxygen supply and the adaptations of animals in groundwater , 1999 .

[69]  A. Boulton,et al.  Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications , 2006 .

[70]  M. Lafont,et al.  The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer , 1994 .

[71]  W. Humphreys The subterranean fauna of Barrow Island, northwestern Australia, and its environment , 2001 .

[72]  R. Evans,et al.  Dependence of ecosystems on groundwater and its significance to Australia , 1998 .

[73]  J. Stock Amsterdam Expeditions to the West Indian Islands, Report 8. A new cave amphipod (Crustacea) from Curacçao: Psammogammarus Caesicolus n. sp , 1980 .

[74]  M. Lafont,et al.  Biomotoring groundwater contamination: Application to a karst area in Southern France , 1996, Aquatic Sciences.

[75]  H. K. Schminke Mesozoic Intercontinental Relationships as Evidenced by Bathynellid Crustacea (Syncarida : Malacostraca) , 1974 .

[76]  Jaap Vermeulen Biodiversity and cultural property in the management of limestone resources - lessons from East Asia , 1999 .

[77]  L. Sinton The macroinvertebrates in a sewage-polluted aquifer , 1984, Hydrobiologia.

[78]  W. Humphreys,et al.  A new genus and six new species of the Parabathynellidae (Bathynellacea, Syncarida) from the Kimberley region, Western Australia , 2005 .

[79]  R. Danovaro,et al.  Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study , 2001 .

[80]  I. Karanovic,et al.  On the genus Candonopsis (Crustacea : Ostracoda : Candoninae) in Australia, with a key to the world recent species , 2002 .

[81]  D. Danielopol,et al.  Hidden biodiversity in the groundwater of the Danube Flood Plain National Park (Austria) , 2001, Biodiversity & Conservation.

[82]  B. Šket The ecology of anchihaline caves , 1996 .

[83]  F. Howarth The evolution of non-relictual tropical troglobites , 1987 .

[84]  W. Humphreys,et al.  Danielopolina (Ostracoda, Thaumatocyprididae) on Christmas Island, Indian Ocean, a sea mount island , 2005 .

[85]  C. Dahm,et al.  ORGANIC CARBON SUPPLY AND METABOLISM IN A SHALLOW GROUNDWATER ECOSYSTEM , 2000 .

[86]  Joo‐Lae Cho A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia , 2005 .

[87]  C. Griebler,et al.  Groundwater ecology : a tool for management of water resources , 2001 .

[88]  M. Hamer,et al.  Molecular evidence suggests an ancient radiation for the fairy shrimp genus Streptocephalus (Branchiopoda: Anostraca) , 2004 .

[89]  T. C. Kane,et al.  Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus , 1995 .

[90]  F. Howarth,et al.  Ecology of Cave Arthropods , 1983 .

[91]  F. Hervant,et al.  Oxygen Consumption and Ventilation in Declining Oxygen Tension and Posthypoxic Recovery in Epigean and Hypogean Crustaceans , 1998 .

[92]  W. Ponder,et al.  The Other 99%: The Conservation and Biodiversity of Invertebrates , 1999 .

[93]  D. Gillieson Caves: Processes, Development and Management , 1996 .

[94]  S. Eberhard,et al.  Ecology and hydrology of a threatened groundwater-dependent ecosystem: the Jewel Cave karst system in Western Australia , 2004 .

[95]  A. Spate,et al.  Subterranean biodiversity in New South Wales: from rags to riches , 2001 .

[96]  W. Humphreys,et al.  EVOLUTION OF SUBTERRANEAN DIVING BEETLES (COLEOPTERA: DYTISCIDAE HYDROPORINI, BIDESSINI) IN THE ARID ZONE OF AUSTRALIA , 2003, Evolution; international journal of organic evolution.

[97]  W. Humphreys,et al.  New aquatic Oniscidea (Crustacea: Isopoda) from groundwater calcretes of Western Australia , 2001 .

[98]  W. Humphreys,et al.  Copepods from ground waters of Western Australia, I. The genera Metacyclops, Mesocyclops, Microcyclops and Apocyclops (Crustacea: Copepoda: Cyclopidae) , 1996 .

[99]  Roderic Brown,et al.  Shaping the Australian crust over the last 300 million years: Insights from fission track thermotectonic imaging and denudation studies of key terranes , 2002 .

[100]  Paul Williams,et al.  Karst Geomorphology and Hydrology , 1989 .

[101]  K. Martens,et al.  On the Darwinulidae (Crustacea : Ostracoda) from Oceania , 2002 .

[102]  Milyeringa veritas (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia , 2001 .

[103]  W. Humphreys,et al.  Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity , 2001 .

[104]  W. Humphreys,et al.  SECOND SPECIES OF MANGKURTU (SPELAEOGRIPHACEA) FROM NORTH-WESTERN AUSTRALIA , 2003 .

[105]  Emily H. Stanley,et al.  THE FUNCTIONAL SIGNIFICANCE OF THE HYPORHEIC ZONE IN STREAMS AND RIVERS , 1998 .

[106]  A. Boulton River Ecosystem Health Down Under: Assessing Ecological Condition in Riverine Groundwater Zones in Australia , 2000 .

[107]  W. Humphreys,et al.  Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera : Dytiscidae) from central Western Australia , 2002 .

[108]  G. Wilson,et al.  A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia , 1999 .