Probability of Globality

The objective of global optimization is to find the globally best solution of a model. Nonlinear models are ubiquitous in many applications and their solution often requires a global search approach; i.e. for a function f from a set A ⊂ R to the real numbers, an element x0 ∈ A is sought-after, such that ∀x ∈ A : f(x0) ≤ f(x). Depending on the field of application, the question whether a found solution x0 is not only a local minimum but a global one is very important. This article presents a probabilistic approach to determine the probability of a solution being a global minimum. The approach is independent of the used global search method and only requires a limited, convex parameter domain A as well as a Lipschitz continuous function f whose Lipschitz constant is not needed to be known. Keywords—global optimization, probability theory, probability of globality

[1]  Philip E. Gill,et al.  Practical optimization , 1981 .

[2]  Eric Walter,et al.  Verified Global Optimization for Estimating the Parameters of Nonlinear Models , 2011 .

[3]  Kasturi R. Varadarajan,et al.  Geometric Approximation via Coresets , 2007 .

[4]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[5]  János D. Pintér Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results , 2001, Ann. Oper. Res..

[6]  Hermann Schichl,et al.  Comparison and Automated Selection of Local Optimization Solvers for Interval Global Optimization Methods , 2011, SIAM J. Optim..

[7]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[8]  Nicholas I. M. Gould,et al.  Numerical methods for large-scale nonlinear optimization , 2005, Acta Numerica.

[9]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[10]  A. Booth Numerical Methods , 1957, Nature.

[11]  Mehrdad Shahshahani,et al.  Distributing Points on the Sphere, I , 2003, Exp. Math..

[12]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[13]  Gabriel Zachmann,et al.  Rapid collision detection by dynamically aligned DOP-trees , 1998, Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180).

[14]  R. Fletcher Practical Methods of Optimization , 1988 .

[15]  J. Nash Compact Numerical Methods for Computers , 2018 .

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  Urmila M. Diwekar,et al.  Introduction to Applied Optimization , 2020, Springer Optimization and Its Applications.

[18]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Computing I , 1995 .

[19]  Nicholas I. M. Gould,et al.  Large-scale Nonlinear Constrained Optimization: a Current Survey , 1994 .

[20]  Dieter W. Fellner,et al.  Simple and Efficient Normal Encoding with Error Bounds , 2011, TPCG.