One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem

In this paper we describe the efficient solution of a PDE-constrained optimization problem subject to the time-periodic heat equation. We propose a space-time formulation for which we develop a monolithic solver. We present preconditioners well suited to approximate the Schur-complement of the saddle point system associated with the first order conditions. This means that in addition to a Richardson iteration based preconditioner we also introduce a preconditioner based on the tensor product structure of the PDE discretization, which allows the use of a FFT based preconditioner. We also consider additional bound constraints that can be treated using a semi-smooth Newton method. Moreover, we introduce robust preconditioners with respect to the regularization parameter. Numerical results will illustrate the competitiveness and flexibility of our approach.

[1]  Mingkui Chen On the solution of circulant linear systems , 1987 .

[2]  A. Wathen,et al.  All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .

[3]  Andrew J. Wathen,et al.  Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..

[4]  Martin Stoll,et al.  All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..

[5]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[6]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[7]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[8]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[9]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[10]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[11]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[12]  A. Wathen,et al.  Preconditioning for active set and projected gradient methods assemi-smooth Newton methods for PDE-constrained optimization with control constraints , 2009 .

[13]  C. Bomhof Iterative and parallel methods for linear systems, with applications in circuit simulation , 2001 .

[14]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[15]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[16]  H. A. van der Vorst,et al.  A Parallelizable GMRES-type Method for p-cyclic Matrices, with Applications in Circuit Simulation , 2001 .

[17]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[18]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[19]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[20]  Ekkehard W. Sachs,et al.  Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..

[21]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[22]  Oliver G. Ernst,et al.  Equivalent iterative methods for p-cyclic matrices , 2000, Numerical Algorithms.

[23]  Valeria Simoncini,et al.  Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems , 2012, Computational Optimization and Applications.

[24]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[25]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..

[26]  Stefan Vandewalle,et al.  Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations , 1992, SIAM J. Sci. Comput..

[27]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[28]  V. Simoncini,et al.  Algebraic multigrid preconditioners for the bidomain reaction--diffusion system , 2009 .

[29]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[30]  M. S. MOMMER,et al.  A NEWTON-PICARD APPROACH FOR EFFICIENT NUMERICAL SOLUTION OF TIME-PERIODIC PARABOLIC PDE CONSTRAINED OPTIMIZATION PROBLEMS , 2009 .

[31]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[32]  Valeria Simoncini,et al.  Fast Structured AMG Preconditioning for the Bidomain Model in Electrocardiology , 2011, SIAM J. Sci. Comput..

[33]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[34]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..

[35]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[36]  M. Hinze,et al.  A Hierarchical Space-Time Solver for Distributed Control of the Stokes Equation , 2008 .

[37]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[38]  T. Rees,et al.  Block‐triangular preconditioners for PDE‐constrained optimization , 2010, Numer. Linear Algebra Appl..

[39]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[40]  Michele Benzi,et al.  A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..

[41]  Stefan Takacs,et al.  Convergence analysis of multigrid methods with collective point smoothers for optimal control problems , 2011, Comput. Vis. Sci..

[42]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[43]  L. Biegler,et al.  Optimization strategies for simulated moving bed and PowerFeed processes , 2006 .

[44]  Timothy A. Davis,et al.  UMFPACK Version 4.3 User Guide , 2004 .

[45]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[46]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[47]  Moritz Diehl,et al.  Nested multigrid methods for time-periodic, parabolic optimal control problems , 2011, Comput. Vis. Sci..